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Offset the carbon emissions for these flights

* More information on carbon offsetting and climate change

Introduction:

* Climate change and the Anthropocene

e Carbon credits

You can help minimise the impact of your flying by offsetting your carbon emissions.
The total carbon emissions from your tinerary are 0.20 tonnes and the cost of

The total cost to offset
offsetting your emissions is 25.0 ZAR.

these emissions is

25.0 ZAR *

Our carbon offset programme 1s approved by the UK Government and your mone

will go towards supporting UN certified carbon emission reduction projects. S How is this calculated?

* Please note: once paid for your carbon-offset contribution cannot be refunded. Add carbon offset

e Carbon market



Presenter
Presentation Notes
Climate change is arguably the biggest threat to our planet (Sedjo & Marland, 2003).
CO2 and other greenhouse gas emissions will profoundly affect the Earth’s climate which will in turn affect human life. 
Current time period coined as the Anthropocene (Raupach & Canadell, 2010).



Carbon offsetting initiatives

* Many initiatives worldwide.

e Fach involve either generating renewable energy or
restoring natural vegetation in degraded ecosystems.

»Hydroelectricity scheme and wind farm (China)
»Bayin'aoboa Wind Farm (Mongolia)
»Wild Rose Conservation Site (Alberta, USA)

» Thicket Restoration (Eastern Cape,
RSA)




Albany Thicket

* Portulacaria afra rich thicket 1s indigenous to
the SW part of the FEastern Cape.

e Falls under Albany Thicket (Mucina &
Rutherford 2000).

* 1 400 000 hectares formerly covered.
* Now only 200 000 hectares remain (Figure 1)

* Degraded through overstocking of livestock
and human activity (Blignaut ez a/. 2009).

* Contributor to Anthropogenic climate change




Status

Spekboom-rich Thicket

Hectares Percentage

Degraded 1,188,774 ] L
Intact 209,048 15
Tatal 1,398,822 100
Western
Cape

Status

B Cegraded Spekboom-rich Thicket
I intsct Spakboom-tich Thichat

[ District Municipalities
[ Local Municipalities

= = fdain Towns

Figure 1: Degradation status of P afra rich thicket in EC
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Carbon sequestration by P afrza

e It 1s able to sequester proportionately large
amounts of C compared with other plants

(Guralnick ez al. 1984).
* C; Photosynthesis
* CAM

e Plants excel in their arid and semi-arid
environments (Guralnick & Ting 1980).

* Low rainfall results in slow decomposition
rates so high carbon content in soil litter.
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The great and elusive carbon

model

* My research aims to contribute to the larger
carbon model which when/ ever complete will
aid in:

»buying and selling of carbon;

»and provide a more accurate calculation of
carbon credits held in P. afra
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Aims
1. To find regressions, and subsequently develop allometric

equations, between physical (measurable) parameters in both
monostemmed and multistemmed specimens.

2. To identify the wet: dry ratios of both monostemmed and
multistemmed plants.
a. Are these different between components?
b. Do ratios change, in the different components, as the plants grow
larger?
3. To identify the proportion contributed by each component to the
total dry biomass.
a.  Does this change as the plants grow larger?
4. To identify the exact carbon content (% of biomass) of P afra
components.

a. Does carbon content of components change as the plants grow larger?
Implications for stability of sequestered carbon!




Methods

Transects laid out in an area of little herbivory and with good
cohorts of P. afra

Plants destructively sampled

Physical parameters measured

Plants split into components (Figure 2)

Components weighed (total weight for plant calculated)
Components dried until constant mass and reweighed

Wet: dry ratios

Material ground and homogenised for % C & N (g) analysis

Regression analyses
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Figure 2: Simplified diagram of the components of P, afra




Results

Regression analyses and allometry




/ Table 1: Regression table of predictors for monostemmed and multistemmed plants \
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Figure 3: Plant
volume (1),
height (2), and
CBSA (3) best
predictors for
above ground
dry biomass
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Figure 4:
Statistical
differences in
wet: dry ratios. A
= monostemmed;
B =
multistemmed

Figure 5: Wet: dry
ratios over plant
size (informed by
plant volume)

monostemmed;
B =
multistemmed
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Contribution to total dry mass
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Figure 6: Contribution of each component to total dry mass over
size range (informed by plant volume)
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Percentage carbon & nitrogen content
of P afra components

Results still pending!

...will be made available...
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Discussion of results

* Plant volume, height, CBSA best predictors of total
plant dry biomass (Table 1; Figure 3).

* Good predictors for multistemmed specimens are
elusive (Table 1)! (Sample sizer??)
o Wet: dry ratios are significantly different between leaves

and (stems and trunks) (Figure 4). Statistical analysis of
changes in ratios as size increases are lacking (Figure 5).

* Contribution to total biomass appears to relatively
uniform (Figure 6). Nonetheless, needs to be subjected
to statistical analysts.

(-




Complicating factors

* Sampling effort and sampling method

Ve %_" :

* Herbivory s |
e Cohabitation 77 :

* Genetics? Sub-species?




Conclusion
Playing devil’s advocate

e The only constant in life is change!

* Scientific licence: The only constant in nature
is change

e If this is the case, and nature and thicket is
constantly changing (P. afra morphology!) then how
can we base such an extensive and potentially
lucrative economy on fixed and static models and
understandings!
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(and to provoke critical thought and discussion)
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Thank you

Questions?
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