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The earth has an albedo of 0.3
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Measuring albedo

* The first satellites started measuring reflected
solar radiation in the late 1970's

— Reflected solar radiation is one of the more
challenging measurements to make

— The main reason for this is reflected solar
radiation takes place over all angles

Hatzianastassiou,2004 \
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Measuring albedo

* Reflected solar radiation is one of the major
elements in the earth’s radiation budget

— If the global albedo reduced by 1% this would
produce an increase in radiative forcing (prior to
any feedbacks) of 3.4W m~2

— This is a similar magnitude to the calculated
effects from GHG
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Characterizing surface anisotropy
MISR Observing Concept

www-misr.jpl.nasa.gov , image courtesy of S. Suzuki and E. M. De Jong \ /
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Characterizing surface anisotropy
MISR Observing Concept
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Characterizing surface anisotropy
MISR Observing Concept
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MISR

* Sensitivity to vegetation structure, owing to
effects of shadowing

* Ability to distinguish canopy and understory
reflectance due to contrast differences
between nadir and oblique views

* Accuracy improvements in vegetation
community and land cover classifications
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Single MISR path
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What does the data look like?
FAPAR path 170, block 117

12 August 2000
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What does the data look like?
FAPAR path 170, block 117

12 August 2000
The current algorithms which produce the MISR-HR

products produce ‘No Data’ when any one of the nine
CS'R cameras has insufficiently accurate or no data (]
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Vegetation albedo
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There is a difference in the albedo
of transformed and intact
vegetation

What does this mean?



Comparing carbon and albedo
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Comparing carbon and albedo

 Average 27 year rate K27 block ¢ Mean of the mean albedo for

at Krompoort each site
e (Calculate the difference
* 0.42 +0.08 kgC m2 yrt between the degraded and
intact sites

* Use the average incoming
solar radiation for Addo,
Baviaanskloof, Bucklands, East
London, Jansenville,
Middleton and Patensie




Comparing carbon and albedo

* Average 27 year rate K27 Mean of the mean albedo

block at Krompoort for each site
e C(Calculate the difference
e 0.42 +0.08 kgC m2 yrt between the degraded and
intact sites

e Use the average incoming
solar radiation for Addo,
Baviaanskloof, Bucklands,
East London, Jansenville,
Middleton and Patensie

* -436 GJ ha'yr!radiative
forcing
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Comparing carbon and albedo

* Average 27 year rate K27
block at Krompoort

e 0.42 +0.08 kgCm=2yrt

* -436 GJ ha'yr!radiative
forcing

Cooling effect

Mean of the mean albedo
for each site

Calculate the difference
between the degraded and
intact sites

Use the average incoming
solar radiation for Addo,
Baviaanskloof, Bucklands,
East London, Jansenville,
Middleton and Patensie

+ 426 GJ ha! yr! radiative
forcing

Warming effect

Mills & Cowling 2005; modelling following Kirschbaum et al. 2011 \ /
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Comparing carbon and albedo
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Comparing carbon and albedo

* Depending on colour and brightness, a land
surface can have a positive (cooling) or
negative (warming) effect on climate

* There is a real difference between the intact
and transformed thicket landscapes

* This difference is important for heat and
moisture budgets




Does this mean we stop restoration?

* No.
* Why not?

e Let’s look at another service, besides carbon
squestration




What does this mean?

Vegetation cover

+ +

Evapotranspiration

Absorbed radiation Radiative | Hydrological
feedback | feedback

Precipitation

Idealised sketch of land-atmosphere interactions. The signs indicate
the effect of the outgoing box on the ingoing box.

Both radiative and hydrological feedbacks are + ->they amplify
change




What does this mean?

Vegetation cover

+ =

Evapotranspiration

Absorbed radiation Radiative | Hydrological
feedback | feedback

Surface
temperature

Idealised sketch of land-atmosphere interactions. The signs indicate
the effect of the outgoing box on the ingoing box.

The radiative feedbacks are + ->they amplify change

GIR The hydrological feedbacks are = -> they dampen change
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Ecosystem services
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Ecosystem services
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BIODIVERSITY

Restoring to an intact
biodiversity-rich state will
change the flow of
services

*Carbon sequestration
*Other provisioning
services




River flow characteristics
Catchment comparison

Compare these services in two contrasting land-
cover states

Statistical analysis of river flow characteristics
— Flow Duration Curves to examine low flows
— Extreme Value Theory on peak flows
— Cumulative plots of discharge and rainfall




River flow characteristics
Catchment comparison

Intact thickets provide:

* Attenuation of flood peaks

* Decreased variability in low flows
 Decreased probability of low flow cessation




Concluding thoughts
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The same order of magnitude as the forcing exerted by a
decrease in albedo associated with the successful
reestablishment of spekboom

Restoration would exert a positive radiative forcing through E=
reduced albedo which could equal the negative forcing
expected through carbon sequestration

The albedo effect is large enough to warrant inclusion in
assessments of the climate regulation potential of thicket
restoration projects.
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River flow characteristics

Catchment comparison

Flow Duration Curves (1981-2011)
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River flow characteristics
Catchment comparison

Extreme value analysis, return level plot (1981-2011)
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River flow characteristics

Catchment comparison
Cumulative plots(1981-2011)
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River flow characteristics
Catchment comparison

Cumulative plots(1981-2011)
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River flow characteristics
Catchment comparison

Cumulative plots(1981-2011)
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River flow characteristics
Catchment comparison

Cumulative plots(1981-2011)
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