RESPONDING TO CLIMATE CHANGE IN MOZAMBIQUE

REPUBLIC OF MOZAMBIQUE MINISTRY OF STATE ADMINISTRATION NATIONAL INSTITUTE OF DISASTER MANAGEMENT

Instituto Nacional de Gestão de Calamidades

National Institute for Disaster Management (INGC) PHASE II

THEME 3 Preparing Cities

October 2012

McKinsey & Co.

Contact details for correspondence:

McKinsey & Co.

Diogo Almeida Pinheiro@mckinsey.com Marcel Normann@mckinsey.com

> Tel: +49 40 3612 1366 Fax: +49 40 3612 1367

Project Director: Joao Tiago MM Ribeiro Project Coordinator: Barbara van Logchem Science Coordinator: Antonio J Queface

Report to be referenced as:

McKinsey & Co. 2012. *Responding to climate change in Mozambique: Theme 3: Preparing cities.* Maputo: INGC.

October 2012, p 1

THEME 3 Preparing Cities

CONTENTS

SLIDE 1			
SLIDE 2			
SLIDE 3			
SLIDE 4			
SLIDE 5			
SLIDE 6			
SLIDE 7			
SLIDE 8			
SLIDE 9			
SLIDE 10			
SLIDE 11			
SLIDE 12			
SLIDE 13			
SLIDE 14			
SLIDE 15			
SLIDE 16			
SLIDE 17			
SLIDE 18			
SLIDE 19			
SLIDE 20			
SLIDE 21			
SLIDE 22			
SLIDE 23			
SLIDE 24			
SLIDE 25			
SLIDE 26			
SLIDE 27			
SLIDE 28			
SLIDE 29			
SLIDE 30			
SLIDE 31			
SLIDE 32			
SLIDE 33			
SLIDE 34			

October 2012, p 2

SLIDE 35	32
SLIDE 36	33
SLIDE 37	33
SLIDE 38	34
SLIDE 39	35
SLIDE 40	35
SLIDE 41	36
SLIDE 42	36
SLIDE 43	37
SLIDE 44	37
SLIDE 45	38
SLIDE 46	38
SLIDE 47	39
SLIDE 48	39
SLIDE 49	40
SLIDE 50	40
SLIDE 51	41
SLIDE 52	41
SLIDE 53	42
SLIDE 54	43
SLIDE 55	43
SLIDE 56	44
SLIDE 57	44
SLIDE 58	45
SLIDE 59	45
SLIDE 60	46
SLIDE 61	46
SLIDE 62	47
SLIDE 63	47
SLIDE 64	48
SLIDE 65	48
SLIDE 66	49
SLIDE 67	49
SLIDE 68	50
SLIDE 69	50
SLIDE 70	51
SLIDE 71	51
SLIDE 72	52
SLIDE 73	53
SLIDE 74	53
SLIDE 75	54
SLIDE 76	54
SLIDE 77	55
SLIDE 78	55

SLIDE 79	56
SLIDE 80	56
SLIDE 81	57
SLIDE 82	57
SLIDE 83	58
SLIDE 84	58
SLIDE 85	59
SLIDE 86	59
SLIDE 87	60
SLIDE 88	60
SLIDE 89	61
SLIDE 90	61
SLIDE 91	62
SLIDE 92	62
SLIDE 93	63
SLIDE 94	64
SLIDE 95	64
SLIDE 96	65
SLIDE 97	65
SLIDE 98	66
SLIDE 99	66
SLIDE 100	67
SLIDE 101	67
SLIDE 102	68
SLIDE 103	68
SLIDE 104	69
SLIDE 105	69
SLIDE 106	70
SLIDE 107	70
SLIDE 108	71
SLIDE 109	71
SLIDE 110	72
SLIDE 111	72
SLIDE 112	73
SLIDE 113	73
SLIDE 114	74
SLIDE 115	74
SLIDE 116	75
SLIDE 117	75
SLIDE 118	76
SLIDE 119	76
SLIDE 120	77
SLIDE 121	77
SLIDE 122	78

SLIDE 123	78
SLIDE 124	79
SLIDE 125	79
SLIDE 126	80
SLIDE 127	80
SLIDE 128	81
SLIDE 129	81
SLIDE 130	82
SLIDE 131	83
SLIDE 132	83
SLIDE 133	84
SLIDE 134	84
SLIDE 135	85
SLIDE 136	86
SLIDE 137	86
SLIDE 138	87
SLIDE 139	88
SLIDE 140	89
SLIDE 141	90
SLIDE 142	91
SLIDE 143	92
SLIDE 144	93
SLIDE 145	94
SLIDE 146	94
SLIDE 147	95
SLIDE 148	95
SLIDE 149	96
SLIDE 150	96
SLIDE 151	97
SLIDE 152	97
SLIDE 153	98
SLIDE 154	98
SLIDE 155	99
SLIDE 156	99
SLIDE 157	101
SLIDE 158	101
SLIDE 159	102
SLIDE 160	102
SLIDE 161	103
SLIDE 162	104
SLIDE 163	104
SLIDE 164	105
SUDE 165	106
SLIDE 166	107
	101

SLIDE 167	108
SLIDE 168	109
SLIDE 169	110
SLIDE 170	111
SLIDE 171	112
SLIDE 172	112
SLIDE 173	113
SLIDE 174	113
SLIDE 175	114
SLIDE 176	114
SLIDE 177	115
SLIDE 178	115
SLIDE 179	116
SLIDE 180	116
SLIDE 181	117
SLIDE 182	117
SLIDE 183	119
SLIDE 184	119
SLIDE 185	120
SLIDE 186	120
SLIDE 187	121
SLIDE 188	122
SLIDE 189	122
SLIDE 190	123
SLIDE 191	124
SLIDE 192	125
SLIDE 193	126
SLIDE 194	127
SLIDE 195	128
SLIDE 196	129
SLIDE 197	129
SLIDE 198	130
SLIDE 199	130
SLIDE 200	131
SLIDE 201	131
SLIDE 202	132
SLIDE 203	132
SLIDE 204	133
SLIDE 205	134
SLIDE 206	135
SLIDE 207	135
SLIDE 208	136
SLIDE 209	137
SLIDE 210	137

SLIDE 211	138
SLIDE 212	138
SLIDE 213	139
SLIDE 214	139
SLIDE 215	140
SLIDE 216	141
SLIDE 217	142
SLIDE 218	142
SLIDE 219	143
SLIDE 220	144
SLIDE 221	144
SLIDE 222	145
SLIDE 223	145
SLIDE 224	146
SLIDE 225	146
SLIDE 226	147
SLIDE 227	147
SLIDE 228	148
SLIDE 229	149
SLIDE 230	150
SLIDE 231	150
SLIDE 232	151
SLIDE 233	152
SLIDE 234	152
SLIDE 235	153
SLIDE 236	153
SLIDE 237	154
SLIDE 238	154
SLIDE 239	155
SLIDE 240	155
SLIDE 241	156
SLIDE 242	156
SLIDE 243	157
SLIDE 244	157
SLIDE 245	158
SLIDE 246	158
SLIDE 247	159
SLIDE 248	159
SLIDE 249	160
SLIDE 250	160
SLIDE 251	161
SLIDE 252	161
SLIDE 253	162
SLIDE 254	162

SLIDE 255	163
SLIDE 256	163
SLIDE 257	164
SLIDE 258	164
SLIDE 259	165
SLIDE 260	165
SLIDE 261	166
SLIDE 262	166
SLIDE 263	167
SLIDE 264	167
SLIDE 265	168
SLIDE 266	168
SLIDE 267	169
SLIDE 268	169
SLIDE 269	170
SLIDE 270	170
SLIDE 271	171
SLIDE 272	171
SLIDE 273	172
SLIDE 274	172
SLIDE 275	173
SLIDE 276	173
SLIDE 277	174
SLIDE 278	174
SLIDE 279	175
SLIDE 280	175
SLIDE 281	176
SLIDE 282	176
SLIDE 283	177
SLIDE 284	177
SLIDE 285	178
SLIDE 286	178
SLIDE 287	179
SLIDE 288	179
SLIDE 289	180
SLIDE 290	180
SLIDE 291	181
SLIDE 292	181
SLIDE 293	182
SLIDE 294	182
SLIDE 295	183
SLIDE 296	183
SLIDE 297	184
SLIDE 298	184

T	Η	Е	Μ	Ε	3

SLIDE 299	185
SLIDE 300	185
SLIDE 301	186
SLIDE 302	186
SLIDE 303	187
SLIDE 304	187
SLIDE 305	188
SLIDE 306	188
SLIDE 307	189
SLIDE 308	189
SLIDE 309	190
SLIDE 310	190
SLIDE 311	191
SLIDE 312	191
SLIDE 313	192
SLIDE 314	192
SLIDE 315	193
SLIDE 316	193
SLIDE 317	194
SLIDE 318	194
SLIDE 319	195

INGC Phase II – "Preparing Cities"

Final report September 2011

able of contents		
	Executive summary	
	Economics of climate adaptation methodology	
	Baseline vulnerability and risk characterization (D1)	
	Climate change adaptation planning and action best practices (D2)	
	Key mitigation and adaptation measures (D3)	
	City disaster risk management system and strategy (D4)	
	Appendix	
D1, D2, D	3, and D4 are the 4 deliverables from the Terms of Reference	

Table	of contents	
	Executive summary	
	Economics of climate adaptation methodology	
	Baseline vulnerability and risk characterization (D1)	
	Climate change adaptation planning and action best practices (D2)	
	Key mitigation and adaptation measures (D3)	
	City disaster risk management system and strategy (D4)	
	Appendix	
Note: D1, D2	2, D3, and D4 are the 4 deliverables from the Terms of Reference	
		2

Participants	Content Presented	Outcome
 CCGC Prime Minister Minister MAE Minister MNEC Minister MA Minister MICOA Minister MD Minister MD Minister MIC Minister MIC Minister MOPH Minister MPD Minister MF Minister MS Minister MEDU Minister MCT Vice Minister MTC General Manger INGC Presidents of key universities (UEM, UP, ISRI, ISPU, UDM, USTM, ISTEG, ISAP, ISCISA) 	 Context and methodological overview for the Theme 3 Vulnerability assessment for Maputo, Beira and Quelimane and implications for prioritization Definition of potential portfolio of financial and non-financial adaptation measures for each city Prioritization of measures for each city Overall cost and impact of proposed adaptation measures Integration into city strategy 	 Indentified measures are very important to protect these cities and need to be included into the municipal investment plans, according to the overall city investment strategy State budget is relatively thin and so measures need to be contingent to existin funding; positive cost-benefir measures, however, should be pushed trough as they are self-sustainable There already exists some degree of insurance on buildings, but these need to be widened to cover climate risks, but it makes more sense to consider this at a national level

SLIDE 9

9	Barbara van Logchem		Antonio Queface (UEM) Fernanda Zermoglio (INGC)	
	Maputo	Beira	Quelimane	Nation-wide
cal utors	Luis Nhaca (Councilor, Municipality) Mário Maccaringue (Councilor, Municipality) Paulo Júnior (UNHABITAT/ Municip.) José Nicols (Municipality – DUC) Acélio Rufasse (Municipality – DUC) Hipolito Affino (Municipality – DUC)	Luis Pacheco (INGC) António Charifo (GIZ/INGC) Augusto de Jesus (Municipality) Samuel Simango (Municipality) Augusto Manhoca (Municipality) António dos Anjos (UCM-CIG)	 Silvestre Uqueio (INGC) Milton Barbosa (INGC) Iria Munguambe (Municipality – DUC) Juma Cassimo (MICOA) 	 João Ribeiro (INGC) Roberto White (former minister) Alberto Mavume (UEM) Jose Rafael (UEM) Gonsalves Júnior (INAM) Mark Tadross (UCT) Elias Massicame (INGC)
	Arnaldo Simango (APIE) Teresa Chissequeme (Municipality – DUC) Jorge Morgado (Port of Maputo) Silva Magaia (UNHABITAT) Manuel Ferrão (CENACARTA)	 Arnaldo Chimoia (District Governor) Ermelinda (MICOA) Jeremias Isaias (WWF) 	 Pio Matos (Municipality President) Alberto Colario (INAM) Sousa Alberto (Port of Quelimane) João Carlos Lima (UP) Luiz Paulo (Millenium Challenge Account) 	 Moises Benissene (INAM) Anastasio Manhique (INAM)

SLIDE 10

The three cities in scope are highly vulnerable to climate-related hazards, but focused adaptation actions can avert the majority of expected losses

City	Key findings			
Maputo	 Highest expected loss is from inland flooding, followed by coastal flooding (which becomes relevant mainly under high CC scenarios) Expected loss is 3-5% of GDP by 2030¹, of which ~37% could be avoided through cost-effective adaptation measures Priority measures include mangrove planting, inland and coastal drainage improvement, and land bank reinforcement 			
Beira	 Highest expected loss is from coastal flooding (which becomes devastating under high CC scenarios) and inland flooding Expected loss is 5-9% of GDP by 2030², of which ~43% could be avoided through cost-effective adaptation measures Priority measures include inland drainage improvement, groyne/sea wall rehabilitation and beach nourishment 			
 Quelimane Highest expected loss is from inland flooding, followed by en malaria) Expected loss is 4-5% of GDP by 2030³, of which ~37% couravoided through cost-effective adaptation measures Priority measures include inland drainage improvement and mangrove replanting 				
Maputo 2030 Project GDP = \$5.2B 2 Beira 2030 Projected GDP = \$2.0B 3 Quelimane 2030 Projected GDP = \$0.9B 9 OURCE: INGC Phase II Theme 3				

NOTES FOR SLIDE 11:

Overview of D1 - Vulnerability Assessment

Current GDP losses for each city due to climate change range from 3.0–4.5%, and are projected to expand up to 5-9% of GDP by 2030.

Losses due to climate change are charted for 2010, 2030, and 2060. The base case shown in grey for each year are the losses projected from the moderate climate change scenario, and the orange bubbles below show the losses as a percentage of each city's GDP. The ranges to the right of each grey bar show the projected losses from the other two climate scenarios, with the low bound at continuing the current climate and the high bound at impacts from the high climate change scenario.

The high bounds for each city's damages for 2030 give the 5-9% estimate for the worst case scenario.

SLIDE 13

Best practice cities offer key learnings for adaptation planning and implementation for Mozambique as a whole and for the specific cities in scope

 Get political backing from highest level possible Take advantage of climate related events to change planning strategy Organise climate action in a sectoral rather than an integrated way Create adaptation champions in other municipal departments Engage companies as part of wider climate/regulatory discussions and foster business champions Start thinking about financial regulations such as climate insurance at a municipal level Start thinking about financial regulations such as climate insurance at a municipal level 	General key learnings	Learnings applicable to specific cities
 3 Organise climate action in a sectoral rather than an integrated way 4 Create adaptation champions in other municipal departments 5 Engage companies as part of wider climate/regulatory discussions and foster business champions 6 Start thinking about financial regulations such as climate insurance at a municipal level 8 Deira 9 Use experience of changes in planning in Monterrey in post storm rebuilding to increase resilience of the planned new urban developments 9 Engage companies as part of wider climate/regulatory discussions and foster business champions 9 Start thinking about financial regulations such as climate insurance at a municipal level 9 Learn from Durban experience when updating city master plan to include adaptation 9 Use experience of Monterrey and Amsterdam in protecting against inland flooding 	 Get political backing from highest level possible Take advantage of climate related events to change planning strategy 	 Ensure resilience of road bridge over water (Catembe) and regulate development on erosion slopes as in Monterrey Use recent extreme weather events as catalysts for action
 5 Engage companies as part of wider climate/regulatory discussions and foster business champions 6 Start thinking about financial regulations such as climate insurance at a municipal level Cuelimane Use experience of Monterrey and Amsterdam in protecting against inland flooding 	 Organise climate action in a sectoral rather than an integrated way Create adaptation champions in other municipal departments 	Beira Use experience of changes in planning in Monterrey in post storm rebuilding to increase resilience of the planned new urban developments
	 5 Engage companies as part of wider climate/regulatory discussions and foster business champions 6 Start thinking about financial regulations such as climate insurance at a municipal level 	Quelimane • Learn from Durban experience when updating city master plan to include adaptation • Use experience of Monterrey and Amsterdam in protecting against inland flooding

NOTES FOR SLIDE 14:

Overview of D3 – Adaptation measures

Undertaking adaptation and mitigation measures would allow cities to reduce the economic impact of disasters by $^{\sim}50\%$ to 60%

The data presented for each city breaks down the projected GDP losses from climaterelated disasters into three buckets.

The first bucket, in light orange, is the percentage for which cost-effective measures exist to prevent the damage. This means less will need to be spent on the prevention measures than will be gained from the reduced losses, so the investments will have a positive net present value.

The second category, in grey, shows the percentage of damages which could be prevented, but only by measures that would cost more than the damages prevented, so should not be undertaken.

The third bucket, in red, shows the climate-related damages that cannot be prevented.

Given that all measures in the first bucket are cost-effective and should be undertaken, cities can capture the benefits in orange, which range from ~50 to ~60% of GDP.

An average of similar analyses for other countries is shown at the right for comparison.

NOTES FOR SLIDE 16:

Overview of D4 – City strategy

A comprehensive adaptation strategy and implementation plan allows Mozambican cities to achieve their climate resilience ambition levels by 2030

Charts the path to a Mozambican climate adaptation implementation plan through 2030 by following five steps:

First, Mozambican cities are already losing GDP through climate impacts.

Second, projections on future climate trends show these impacts will become more severe.

Third, Mozambique has set an ambition to curb losses from climate change to 50% of Current level, even given the increasing severity of climate change impacts.

Fourth, to meet these ambitions, Mozambican cities must begin a 5-year investment plan in adaptation measures, and form the necessary organizational bodies and processes to manage and adjust those plans.

Fifth and finally, this adaptation strategy must be translated into a tactical implementation plan, with specific investments tied to projected adaptation benefits through avoided losses.

Table of	contents	
	Executive summary	
	Economics of climate adaptation methodology	
	Baseline vulnerability and risk characterization (D1)	
	Climate change adaptation planning and action best practices (D2)	
	Key mitigation and adaptation measures (D3)	
	City disaster risk management system and strategy (D4)	
	Appendix	
Note: D1, D2, D3,	and D4 are the 4 deliverables from the Terms of Reference	
		18

NOTES FOR SLIDE 20:

You can see here that the number of catastrophes has risen sharply. Not all of these are climate-related, but you can see that more people are being hurt.

The financial costs of disasters are also rising.

In a few minutes, we'll talk about why. But looking ahead to even warmer conditions, scientists are contemplating much greater impacts in terms of human health, social costs and economic trouble.

NOTES FOR SLIDE 21:

This chart shows the estimated impact of each degree of increase in the average global temperature. These findings are from the Stern report and have been confirmed by the IPCC.

Because we experience +/-3°C variation in temperatures on a daily basis, it is often difficult for people to imagine the impact of a net 3°C increase in the average global temperature. Do remember though that this is an average global increase – that means that in certain places temperatures will rise more than the average 3 degrees. Even more problematic than the absolute temperature rise is the rate of change. While natures may be able to make long-term adjustments driven by climate shifts, the human species has never before needed to adjust to such rapid changes.

NOTES FOR SLIDE 24:

These overlapping circles represent three different human needs: development, mitigation and adaptation. We can and must meet all of those needs.

Development has to be low-carbon, as we explain here, and be adapted to resist the impacts of climate change.

Of course, this won't be easy–even if everyone gets with the program. We can't do everything because financial and human resources, and time, are limited.

To make wise choices about how to invest scarce resources – to achieve climatecompatible development -- we need more knowledge, planning and preparation. We need better disaster management and insurance. We need new climate-resilient infrastructure and technology.

And that brings us to our second topic...

NOTES FOR SLIDE 25:

We need ways to measure and predict the impacts of climate change. And we need to prepare for those changes.

Our work is meant to help you and other leaders use a fact-based approach to answering those questions.

To see if our approach worked, we applied it in eight distinctly different real-world environments...

NOTES FOR SLIDE 27:

Even with real estate crashing, Florida is still rich. It's also a huge target for hurricanes. Guyana is relatively poor and relies heavily on commodities like sugar and bauxite, whose prices are beyond the country's control.

Despite their many differences, we found that we could use our approach to think about the risks in all of these areas -- and to build a cost-effective portfolio to manage those risks overall, over many years.

NOTES FOR SLIDE 28:

We begin the process in Step 1 by assessing risks given relevant hazards and what's at stake.

In Step 2, we model scenarios to calculate the total risk. In simple terms, that means considering what's at stake now, what will be at stake as the economy and population grow, and the range of possible climate changes.

In Step 3, we use those scenarios to build a portfolio of possible responses. Drought- or flood-resistant crops might be one worthy investment. Abandoning some land and allowing it to return to wetlands might be another.

Step 4 in this schematic is putting those actions into place, in the right order, after identifying and overcoming barriers to implementation.

The last step in the cycle is assessing the effects of our approaches, adjusting them based on new information, new technology and fresh predictions.

The climate will keep changing, and this framework accounts for that by looking at total climate risk management as a continuous process.

It is complex, given the many uncertainties about the global climate and the number of moving parts in these equations. But scenario planning allows us to set priorities even without complete or perfect knowledge...

NOTES FOR SLIDE 30:

Considering both economic and human losses, we can use this equation to come up with an expected loss for each scenario.

The "hazard module" incorporates the severity and frequency of each risk depending on scenarios.

The "value module" takes into account what is at stake today, and the value of each element as economies and populations grow.

"Vulnerability" refers to how each element at risk may be affected by climate changes.

Together, they give us what we call a "loss exceedence curve"...

NOTES FOR SLIDE 35:

Economics of Climate Change Approach for Total Climate Risk Management – Magnitude of Expected Loss – Vulnerability Module

This example of a Caribbean country shows a vulnerability curve generated for an asset, bananas, based on hazard (wind) severity, calibrated with historic loss data.

To give an example of the kinds of vulnerability analyses underaken through the ECA tool, the percentage of the banana crop, a valuable asset, that will be damaged is charted at different wind speeds.

The x axis is a number of different wind speeds in m/s. The y axis is the proportion of the production of bananas at risk of wind damage at any one time that will be damaged by a particular wind speed.

This kind of analysis, when plotted with the projected frequency of high wind speed events under different climate scenarios, is used to build a bottom up picture of asset vulnerability to climate change.

NOTES FOR SLIDE 37:

On the left of this slide, you see that multiple predictions exist for rainfall in Tanzania 20 years from now. Each prediction has been made by groups of credible scientists, and we can see that they vary widely.

But we can group the predictions into the three scenarios on the right.

Then we use them to calculate expected losses...

l able of	contents	
	Executive summary	
	Economics of climate adaptation methodology	
	Baseline vulnerability and risk characterization (D1)	
	Climate change adaptation planning and action best practices (D2)	
	Key mitigation and adaptation measures (D3)	
	City disaster risk management system and strategy (D4)	
	Appendix	
Note: D1, D2, D	3, and D4 are the 4 deliverables from the Terms of Reference	
		40

L

Municipality	Coastal vulnerability	Hazard profile	Sectoral constraints	Early warning capacity	Response plans	Institutional capacity
Maputo	• 7% of asset value at risk	 Recent coastal & inland floods, storms, and epidemics Rapid development in hazard- prone areas 	All three cities face greatest risk to three key sectors: — Transport — Housing — Medical services	Little early warning infra- structure currently in place, with the exception of the CIZ	All three cities well integrated into INGC disaster response system, with provision for multiple levels	All three cities need Institutiona capacity through training govt. officials and INCC
Beira	20% of asset value at risk	 Recent coastal & inland floods, storms, and epidemics Coastal and low-lying area construction 	 These sectors are also amongst most important for functioning emergency response, and 	funded project already underway combining sand dune strengthen-	 Naitonal- level emergency response coord. through 	 staff Resource including responder training, emergency kits and
Quelimane	 No coastal vulnerability, but significant risk from inland flooding to > 20% of surface area 	 Recent inland floods, tropical storms & epidemics Rapid peri- urban pop. growth & flood- prone area development 	emergency response, and could hinder such a response if not properly prepared a major weather event	ing and neighbor- hood early warning in South Africa	CTGČ Provincial Emergency Operations Centers Local Disaster Mgmt. committees	equipment and communic tions equip Some offered presently through foreign aid

APUTO Natural hazards have caused in recent years	significant damage to Maputo
Coastal flooding	Inland flooding
 Storm surges from Cyclone Eline caused significant damage to the Avenida Marginal and flooded parts of Costa do Sol in 2000 	 Flooding in 2000 caused nearly USD 100 million in damages in Maputo forced the evacuation of 8,400 people from their homes
Tropical storms	Epidemics
 Strong winds in 2005 destroyed 912 homes in the Maputo province and caused significant damage to schools and health posts 	 24% of peri-urban Maputo and 11% of urban Maputo are infected with Malaria, resulting in an average of 238,000 cases per year during the 1999-2010 period
SOURCE: INGC, World Bank, President's Malaria Initiative	45

Scale	Organ	Roles and responsibilities	Composition	Size Number of people
National	Technical Council for Disaster Management (CTGC)	 Coordinates national emergency response Can be rapidly convened in emergencies Once convened for an emergency, meets twice a day 	 Led by INGC Director, then Prime Minister, then President depending on threat level INGC, INAM, ING, DNA 	~15-20
Provincial/ Municipal	Municipal Emergency Operations Center (COE)	 Coordinates municipal- level emergency response Rapidly convened in emergencies that involve the city 	 Key municipal officials Departments of infrastructure, communication, health, and planning 	~15-20
Neighbor- hood	Local Disaster Management Committees (CLGCs)	 Coordinate local disaster response Provide updates to COE and CTGC via radio/phone Assist residents evacuate affected zones 	 Trained civil servants and volunteers Usually organized around a school 	 17 committees 12-20 members each

	Gap	Description	Plans for improvement
Resource needs	 Emergency kits for local committees 	 Only one-third of local committees currently equipped with emergency kits 	 None at present, aside from spontaneous NGO donations
	 Emergency equipment 	 More vehicles, boats, tents, computers needed for adequate disaster response 	 None at present
	 Communication equipment 	 Radios, satellites, and training for technicians 	 MSB (Sweden) funds to improve radio system DFID program for satellit capacity-building
Institutional capacity	 Training for government officials 	 Training gap for city officials and traditional local authorities 	 Red Cross currently training local committees
neeus	 INGC capacity building 	 Need for more trained technicians and incentives to retain them 	 None at present

MAP 2	We defined for future u	3 climate change ncertainty Climate scenario	scenarios to accou	Int
		Current climate	Moderate change	High change ³
	Scenario description	 No change from 1980- 99 levels¹ 	 Median of down-scaled GCMs² 	 90th percentile of downscaled GCMs
	Sea Level Rise (SLR)	 No from change from 1980-1999 levels 	 15cm increase by 2030 	 45cm increase by 2030
variables	Sea Surface Temperature (SST)	 No from change from 1980-1999 levels 	 1.3°C increase by 2030 	 2°C increase by 2030
Climate	Air temperature	 No from change from 1980-1999 levels 	0.9°C increase by 2030	 1.1°C increase by 2030
	Precipitation	 No from change from 1980-1999 levels 	 1.2mm of additional precipitation/week during Dec-Mar season 	 3.3mm of additional precipitation/week during Dec-Mar season
1 Or 1 2 Glob 3 Con:	980-2005, depending on climate al circulation models sidered worst-case, using aggres	model baseline sive ice-melt scenarios	Please see Appendix for the climate change scen	or more details on how marios were defined
SOUR	CE: INGC phase I report; IPCC	AR4; UCT		51

NOTES FOR SLIDE 53:

D1 – Magnitude of Expected Loss – Hazard Module – Coastal Flooding and Storm Surge

Scenarios for climate change impact frequency and severity of hazards.

The frequency and severity of high level storm surges are compared for a number of different climate change scenarios for 2030.

The X axis charts the severity of the storm surge, meaning how many centimeters the 2010 Mean Sea Level the coastal waters will rise during a storm. The Y axis charts the "Return period", or frequency with which the event is likely to take place. The lines are the projections for the three modeled climate scenarios, a continuation of current climate, and a medium and high scenario.

Taken together, any point on one of these curves shows how often it is likely that storm surge will reach a particular level. A 100 year line is shown to indicate that that, if Current climate were to continue, a 274cm above MSL rise could be predicted once every hundred years.

The increasing severity of storm surges projected by 2030 is shown in the increasing cm rise projected every 100 years for the two more pessimistic climate scenario lines. For the 2030 medium climate change scenario, once in a 100 year storm surge increases to 292 cm above MSL, and 2030 high climate change will result in a significantly higher 100 year return storm surge.

3.0

2010

Note: Please consult final documents for INGC Phase II Theme 2 for further information SOURCE: INGC Phase II Theme 3

SLIDE 61

3.0-5.3

2030

3.2-10.5

2060

October 2012, p 46

59

Natural hazards have caused in recent years	significant damage to Beira	Q
Coastal flooding	Inland flooding	
 Storm surges from Cyclone Eline caused significant damage to coastal roads and sea walls in 2000 	 Flooding in 2000 caused nearly USD 60 million in damages in Beira and forced the evacuation of ~20,000 people from their homes 	
Tropical storms	Epidemics	
 Strong winds in 2006 destroyed 90 houses and damaged 750 in the Sofala province, causing significant damage to schools and health posts 	 27% of urban Beira are infected annually with malaria, resulting in an average of 118,000 cases per year during the 1999-2010 period 	
SOURCE: INGC, World Bank, President's Malaria Initiative	64	ŀ

Scale	Organ	Roles and responsibilities	Composition	Size Number of people
National	Technical Council for Disaster Management (CTGC)	 Coordinates national emergency response Can be rapidly convened in emergencies Once convened for an emergency, meets twice a day 	 Led by INGC Director, then Prime Minister, then President depending on threat level INGC, INAM, ING, DNA 	~15-20
Provincial/ Municipal	Municipal Emergency Operations Center (COE)	 Coordinates municipal- level emergency response Rapidly convened in emergencies that involve the city 	 Key municipal officials Departments of infrastructure, communication, health, and planning 	~15-20
Neighbor- hood	Local Disaster Management Committees (CLGCs)	 Coordinate local disaster response Provide updates to COE and CTGC via radio/phone Assist residents evacuate affected zones 	 Trained civil servants and volunteers Usually organized around a school 	 ~15 commit- tees 12-20 members each

	Gap	Description	Plans for improvement
Resource needs	 Emergency kits for local committees 	 Only one-third of local committees currently equipped with emergency kits 	 None at present, aside from spontaneous NGO donations
	 Emergency equipment 	 More vehicles, boats, tents, computers needed for adequate disaster response 	 None at present
	 Communication equipment 	 Radios, satellites, and training for technicians 	 MSB (Sweden) funds to improve radio system DFID program for satellit capacity-building
Institutional capacity	 Training for government officials 	 Training gap for city officials and traditional local authorities 	 Red Cross currently training local committees
needs	 INGC capacity building 	 Need for more trained technicians and incentives to retain them 	 None at present

BEIF 2	We define for future	ed 3 climate change uncertainty Climate scenario	e scenarios to accou	unt
		Current climate	Moderate change	Very high change ³
	Scenario description	 No change from 1980- 99 levels¹ 	 Median of down-scaled GCMs² 	 90th percentile of downscaled GCMs
	Sea Level Rise (SLR)	 No from change from 1980-1999 levels 	 15cm increase by 2030 	 45cm increase by 2030
variables	Sea Surface Temperature (SST)	 No from change from 1980-1999 levels 	 1.3°C increase by 2030 	 2.0°C increase by 2030
Climate	Air temperature	 No from change from 1980-1999 levels 	 1.0°C increase by 2030 	 1.2°C increase by 2030
	Precipitation	 No from change from 1980-1999 levels 	 3.6mm of additional precipitation/week during Dec-Mar season 	 8.2mm of additional precipitation/week during Dec-Mar season
1 Or 1 2 Glob 3 Con:	980-2005, depending on clim al circulation models sidered worst-case, using ag	nate model baseline gressive ice-melt scenarios	Please see Appendix for the climate change sce	or more details on how narios were defined
SOUR	CE: INGC phase I report; IP	CC AR4; UCT		70

NOTES FOR SLIDE 72:

D1 – Magnitude of Expected Loss – Hazard Module – Coastal Flooding and Storm Surge

Scenarios for climate change impact frequency and severity of hazards.

The frequency and severity of high level storm surges are compared for a number of different climate change scenarios for 2030.

The X axis charts the severity of the storm surge, meaning how many centimeters the 2010 Mean Sea Level the coastal waters will rise during a storm. The Y axis charts the "Return period", or frequency with which the event is likely to take place. The lines are the projections for the three modeled climate scenarios, a continuation of current climate, and a medium and high scenario.

Taken together, any point on one of these curves shows how often it is likely that storm surge will reach a particular level. A 100 year line is shown to indicate that that, if Current climate were to continue, a 445cm above MSL rise could be predicted once every hundred years.

The increasing severity of storm surges projected by 2030 is shown in the increasing cm rise projected every 100 years for the two more pessimistic climate scenario lines. For the 2030 medium climate change scenario, once in a 100 year storm surge increases to 490 cm above MSL, and 2030 high climate change will result in a significantly higher 100 year return storm surge.

Vulnerability to coastal and inland flooding is concentrated in a small number of neighborhoods, representing ~10% of Beira's surface area, and ~60% of population

Scale	Organ	Roles and responsibilities	Composition	Size Number of people
National	Technical Council for Disaster Management (CTGC)	 Coordinates national emergency response Can be rapidly convened in emergencies Once convened for an emergency, meets twice a day 	 Led by INGC Director, then Prime Minister, then President depending on threat level INGC, INAM, ING, DNA 	~15-20
Provincial/ Municipal	Provincial Emergency Operations Center (COE)	 Coordinates municipal- level emergency response Rapidly convened in emergencies that involve the city 	 Key municipal officials Departments of infrastructure, communication, health, and planning 	~15-20
Neighbor- hood	Local Disaster Management Committees (CLGCs)	 Coordinate local disaster response Provide updates to COE and CTGC via radio/phone Assist residents evacuate affected zones 	 Trained civil servants and volunteers Usually organized around a school 	 ~10 commit- tees 12-20 members each

	Gap	Description	Plans for improvement
lesource leeds	 Emergency kits for local committees 	 Only one-third of local committees currently equipped with emergency kits 	 None at present, aside from spontaneous NGO donations
	 Emergency equipment 	 More vehicles, boats, tents, computers needed for adequate disaster response 	 None at present
	 Communication equipment 	 Radios, satellites, and training for technicians 	 MSB (Sweden) funds to improve radio system DFID program for satellit capacity-building
nstitutional apacity	 Training for government officials 	 Training gap for city officials and traditional local authorities 	 Red Cross currently training local committees
eeas	 INGC capacity building 	 Need for more trained technicians and incentives to retain them 	 None at present

Current climate Moderate char Scenario description • No change from 1980- 99 levels1 • Median of dow GCMs ² Sea Surface Temperature (SST) • No change from 1980- 1999 levels • 1.3°C increas	ngeVery high change³wn-scaled• 90 th percentile of downscaled GCMse by 2030• 2.0°C increase by 2030
Scenario description • No change from 1980- 99 levels ¹ • Median of dow GCMs ² Sea Surface Temperature (SST) • No change from 1980- 1999 levels • 1.3°C increas	wn-scaled • 90 th percentile of downscaled GCMs
Sea Surface Temperature (SST) • No change from 1980- • 1.3°C increas 1999 levels	e by 2030 • 2.0°C increase by 2030
→ · · · · · · · · · · · · · · · · · · ·	
Air temperature • No change from 1980- • 0.9°C increas	e by 2030 • 1.2°C increase by 2030
 Precipitation No change from 1980- 1999 levels 3.0mm of add precipitation/v during Dec-M 	Jitional • 8.2mm of additional week precipitation/week lar season during Dec-Mar season

NOTES FOR SLIDE 92:

D1 – Magnitude of Expected Loss – Hazard Module – Wind damage

Scenarios for climate change impact frequency and severity of hazards.

The frequency and severity of high wind speeds are compared for three different climate change scenarios for 2030.

The X axis charts the severity of the wind speed in Km per hour. The Y axis charts the "Return period", or frequency with which the event is likely to take place. The lines are the projections for the three modeled climate scenarios, a continuation of current climate, and medium and high scenarios.

Taken together, any point on one of these curves shows how often it is likely that wind speeds will reach a particular level. A 100 year line is shown to indicate that that, if current climate were to continue, a 216 km/h wind speed could be predicted once every hundred years.

The increasing severity of wind speeds projected by 2030 is shown in the increasing speeds projected every 100 years for the two more pessimistic climate scenario lines. For the 2030 high climate change scenario, for example, once in a 100 year wind speed increases to 247 Km/hour.

Sector	IMANE Image: Transport, housing, and medical services are those sectors mostly at risk from climate change effects Risk from climate- Risk from climate- ector related disasters			
Administration		 Main administrative buildings in safe areas 		
Transport		 Unpaved roads rendered impassable in heavy rains; many paved roads susceptible to erosion 		
Medical services		 Some medical facilities surrounded by flood-prone access roads 		
Tourism	٢	 Most hotels and tourist facilities located in safer areas not prone to flooding 		
Business	 Most businesses in safer, higher ground; port lower-lying area, but protected by seawall 			
Houses and buildings		 Risk from inland floods, especially new areas of informal development in Icídua and Chuabo- Dembe 		
e: Please consult final do	cuments for INGC Phase II Theme	2 for further information	1	

Location and geography	 Capital City of the Nuevo Leon State, Mexico Also known as the City of Mountains Surrounded by Cerro de la Silla, Loma Larga, Topo Chico, Cerro de las Mitras and Sierra Madre Oriental
Climate	 Average temperature is 23°C (min is 8°C and max is 43°C) Hottest months are June, July and August Rainy season is from July to September Climate change hazards: hurricanes, drought, increased risk of forest fires, extreme precipitation events, cold waves
Economy	 GDP per capita \$21,788 in 2006 Important resource generator with developed commercial and industrial sectors Third largest economy in the country
Population	 Third largest city of the country Population: 3.7 million

	Questions
Framework and policies	 What frameworks/policies are in place and how do you incorporate climate change adaptation into city planning? How do you prioritize climate-related measures? How regularly do you update and validate your prioritization?
Organizational set up	 How is your city organized and which departments are involved in climate change adaptation activities? What are the main adaptation related roles in the municipality? What are their responsibilities? Who defines and proposes adaptation measures? Who decides on the implementation of adaptation measures (specifically when there are trade-offs with other priorities)?
Role of the private sector	 How do you involve the private sector in adaptation planning? Does your adaptation plan have a private sector component?
Financial regulations	 Do you have any risk transfer mechanisms or insurance policies covering natural perils' If so are they mandatory? Are there any financial incentives for businesses and individuals to implement adaptation measures?
	In addition: What are the most important lessons you have learned? What are the main pitfalls to avoid?

policies	up up		regulations
	Durban	Amsterdam	Monterrey
City insurance	 City has insurance policy covering extreme events 	 City has insurance policy covering extreme events 	 NL insures assets like major roads against natural disasters Monterrey city insures against natural disaster¹ Municipal insurance for individuals against flood
Private sector insurance	• N/A	 N/A 	 Companies must have insurance
Climate component	 No explicit climate related component to city insurance 	 No explicit climate related component to city insurance 	 No explicit climate related component to city insurance

MAPUTO	ion measures long l	list: Coastal flooding (1/	4) Included in	Low Me	dium High
			Feasibility		
	Measure	Description	Engineering	Local authority	Community
	Build dikes / complete water retaining defence	high-risk, high asset value areas using 4m-high coastal dike system	\bigcirc		
	1B Develop mangrove buffer	Restore and expand natural coastal mangrove buffer to 100m thickness in order to dissipate wave energy and reduce flooding risk			
Infrastructure/ asset based responses	Expand reef and sandbar system	Restore reefs and/or build offshore sandbars to dissipate wave energy offshore and reduce flooding risk from storm surges	, ()		
	Build sea walls / retaining wall in strategic locations	Armor coastline with rock revetments in populated areas, to dissipate wave energy and prevent erosion			
	E Create offshore breakwaters	Build concrete and rock structures offshore and parallel to coastline to reduce wave energy reaching shoreline	\bigcirc		
Technological/	F Beach nourishment	Import or relocate sand from elsewhere in the islands or offshore to keep beaches at constant width despite erosion	\bigcirc		
responses	16 Raise elevation of coastline	Build coastline upwards with material sourced from elsewhere	\bigcirc		
Systemic/	Elevate all existing near-shore structures	Modify existing near-shore structures below 4m elevation to be elevated on 2m high stilts			\bigcirc
responses	1 Elevate all new near-shore structures	Continue to build in hazard zone, but require the all new structures be elevated on 2m stilts	See Append complete lo	dix for	
Financial	1 Coastal drainage	Construct canals to facilitate rapid and controlle drainage in coastal areas	neasures a easibility so	nd	
responses	Groynes/Sea wall rehabilitation	Repair existing sea wall infrastructure to better limit storm surge and to control erosion		•	
SOURCE: INGC Pha	ase II Theme 3; MNRE; UNESCO; UNEP	; experts interviews			122

RESPONDING TO CLIMATE CHANGE IN MOZAMBIQUE

SLIDE 124

MAPUTO	tion measures long	list: Coastal flooding (2/	4) Included in	Low Me	M B Q dium High
			Feasibility		
	Measure	Description	Engineering	Local authority	Community
Infrastructure/ asset based responses					
	2A Retrofit important buildings	Retrofit important buildings in hotspots with unbonded lateral bracing to strengthen and also allow for flexible movement, decreasing likelihood of catastrophic brittle collapse			
Technological/ optimisation	2B Build mobile barriers	Install moveable barriers that can be erected prior to expected storm surge, and stowed to preserve aesthetics of coastline between storms	\bigcirc		
responses	2C Coastal floodproofing	Upgrade commercial and residential buildings below 3m elevation with floodproofing measures (e.g. waterproof sealing, blocking doorways)			
	2D Improve storm detections system	Review current storm/sea level detection systems and optimize by installing additional detectors and monitoring unit			
Systemic/ behavioral responses					
Financial responses					
SOURCE: INGC Pha	se II Theme 3; MNRE; UNESCO; UNE	P; experts interviews			123

			Feasibility			
	Measure	Description	Engineering	Local authority	Communi	
frastructure/ set based sponses						
chnological/	3A Sandbagging	Distribute sandbags for disaster preparedness and replace after each major event				
sponses	3B Flood-adapt home usage	Require flood-adapted interior fittings, primarily by moving all electrical connections and panels up (to second story, or to purpose-built platform) for residential and commercial buildings below 4m				
	3C Revive reef system	Identify and minimise anthropogenic stresses such as pollution on coral reefs and encourage their recovery				
stemic/	3D Coastal zoning	Restrict construction in high-risk zones and/or relocate vulnerable populations to safer areas		\bigcirc		
havioral sponses	3E Incentivise movement uphill	Incentivise households to move uphill away from hazard zone		\bigcirc	\bigcirc	
	3F Improve disaster response	Review current disaster response plan and adapt to include proper coastal flooding response procedures				
nancial	36 Set up ICZM (Integrated Coasta Zone Management)	al Set up a National cooperative approach to conserve and develop coast economically, socially, and environmentally (e.g. Australia)				
sponses						

A The	efiltering	proces	s resulted in a sho	rt list of		-	<u>м у в у Q</u>
11	measures	s (1/2)			Feasibili	ty	
Hazard	Measure		Description	Geographic focus	Engin- eering	Local authority	Comm- unity
Inland flood- ing		 Inland zoning 	 Restrict construction in high- risk zones and/or relocate vulnerable populations to safer areas 	 Poor inland flood prone neighborhoods 			
	1	 Building codes 	 Improve construction in risk zones to reduce vulnerability to flooding 	 Rich inland flood prone neighborhoods 			
		 Inland drainage 	 Construct canals and reservoirs to facilitate rapid and controlled drainage in inland areas 	 Rich inland flood prone neighborhoods 			
		 Land bank reinforce- ment 	 Reinforce land banks to avoid erosion caused by heavy rains 	 Polana Cimento and Polana Caniço 			
Coastal flood- ing (1/2)		 Coastal zoning 	 Restrict construction in high- risk zones and/or relocate vulnerable populations to safer areas 	 Poor coastal flood prone neighborhoods 			
		 Mangrove revival¹ 	 Replant and maintain mangrove areas to protect the coast 	 Northern Costa do Sol 			
1 Chosen as e SOURCE: ING	quivalent but domi SC Phase II Theme	inant measure t e 3	o sand nourishment due to cost				126

NOTES FOR SLIDE 130:

Response measures – Shortlist of adaptation measures module

Analyses show that short-listed measures could avert up to 80-90 USD millions of expected loss by 2030 with cost-benefit ration of 65 to 75%

This "cost curve" charts the most cost effective actions that Maputo could take in order avoid climate-caused losses by 2030.

The x axis shows the expected losses that will be incurred by Maputo by 2030. The three lines all the way to the right are the total expected losses under the three climate scenarios – Current Climate, Moderate CC and High CC.

The width of each bar on the cost curve represents the losses that would be avoided if the measure was put into place. Land bank reinforcement, for example, would avoid the most losses of all the measures. The bars are colored according to the type of risk the measure helps avoid (e.g., orange for inland flooding).

The y axis is the cost-benefit ratio for each measure, meaning how much the measure costs to implement relative to the benefits (the avoided costs from climate change) it produces. Measures with a C/B ratio of less than 1 produce more benefit than they cost. The bars are sorted in order of increasing cost to benefit, meaning that the ones on the left produce the most benefit for their cost while the ones to the right produce the least benefit for the most cost.

This curve notes the Expected Loss Averted by 2030 at USD 80-90 M, the sum of the costs avoided (the width of the bar) of all measures with a C/B Ratio less than 1.5, the proposed cut-off point for implementing a measure. The average of C/B ratios of the implemented measures is show to be 65 - 75%.

High ²			Moderate			Cu	rrent climate	9 ²		Key parametersDiscount rate: 7%
Risk	Measure	Туре	2011	2012	2013		2030	NPV	C/B	• Time horizon: 20
Inland flooding	Inland zoning	Costs	152953	256	256		256	155600	.63	 Unit: 2010 US doi
Ū	Building codes	Benefits Costs	39293	11408 0	13011 0		40269 0	245720 39293	1	Cost-benefit ratio Calculated as the ne
		Benefits	00000	4200	4761		14312	90646	5 .43	present value of cost
	Local drainage	Benefits	20000	4375	4960		14908	40671 92073	.44	value of benefits acro
	Land bank reinforcement	Costs	38000	3800	3800		3800	77275	.56	20 years
		Benefits		6446	7343		22593	138196	<u> </u>	Costs ¹
Coastal flooding	Coastal zoning	Costs	20700	40	40 305		40	21113	2.23	 Initial capital investment occurs
	Mongroup rouisel	Cooto	400	201	10		1909	9450	5	vear 1 subsequer
	wangiove revival	Benefits	400	741	1062		6505	31651	0.03	recurring costs (e
	Coastal flood-	Costs	20585	0	0		0	20585	0.59	in years 2-20
	F	Benefits		850	1201		7162	35097	_	 Costs are prelimir
	Sea walls	Costs	30000	1500	1500		1500	45503	1.32	estimates to be refined/updated b
	Coastal drainage	Costs	22286	2229	2229		2229	45319	0.48	planned Climate Change Know, Ct
		Benefits		2278	3217		19184	94010	J 0.40	enange raten et
Epidemics	Bed net distribution	Costs	3000	3000	3000		3000	34007	0.83	Benefits
		Benefits		2681	2831		5364	41217	<u>_</u>	Benefits calculate
	Indoor residual	Costs	2181	2181	2181		2181	24722	L 0.57	economic losses
	spraying	Benefits		2989	2989		5665	43526	J 0.57	averted in each year

NOTES FOR SLIDE 135:

Possible Adaptation Responses – Insurance Program Proposal module

Maputo can select its degree of insurance protection by choosing its deductible and which frequency of events to insure

This chart plots the return period of a catastrophe (how often it occurs) against the expected loss from the event.

Maputo can avoid the damages of events occurring with a relatively high frequency cost-effectively through adaptation measures. On the other end of the spectrum, there are events that occur only every several hundred years for which the municipality will need to rely on donor and international support.

In the middle of the spectrum are low probability, high impact events for which the municipality may want to transfer risk using a financial mechanism, e.g., an insurance policy. The municipality will need to determine how much risk to maintain on itself for these events, e.g., how high to set its deductible. As well, it must determine the range of events to cover with a risk transfer, e.g., events occurring ever 50 - 100 years, versus those occurring every 100 - 150 years.

MAPUTO	irance should co	ver most extr	eme events f	for the 3 haz	ards
Moderate	climate change scenario)		Insurance covera	age scenario
				"Bulletproof"	"Average"
Hazard	Description	Potential parametric index		50-150-year events	2 100-150 year events
Coastal	 Lower frequency 	 Maximum sea 	Parametric Index	280 cm	300 cm
flooding	levels that overwhelm coastal defenses	port (cm above MSL ¹)	Expected loss	USD 0.5 MM	USD 0.4 MM
Inland	 Lower frequency inland fleading 	 Peak week 	Parametric Index	500 mm	560 mm
flooding	events not protected effectively by adaptation measures	precipitation (mm)	Expected loss	USD 8.6 MM	USD 6.0 MM
Wind	 Tropical cyclones with wind speeds 	 Maximum wind speed (km/hr) 	Parametric Index	90 km/h	120 km/h
damage	above 150 km/hr that cause substantial damage		Expected loss	USD 0.2 MM	USD 0.1 MM
1 Mean sea le	vel				
SOURCE: INC	C Phase II Theme 3				137

NOTES FOR SLIDE 138:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance should cover most extreme events for the 3 hazards

Maputo could purchase insurance to protect itself against catastrophic losses associated with three major climate events.

Two levels of insurance are described, a "bulletproof" policy level that would cover the municipality against severe events projected to occur only every 50-150 years, and an "average" policy level that would only cover the events projected to occur once every 100-150 years.

For each level of insurance and each event type, a "parametric index" is listed, meaning an event that would trigger an automatic payout of the insurance coverage. For example, for the "bulletproof" policy for coastal flooding, the insurance would pay out automatically when sea level at port reaches 280cm above MSL.

Expected losses are also listed for each policy level – the losses are greater for the bulletproof policies because, while the triggering events are on average less severe for the 50-150 year events, they also are projected to occur more often.

NOTES FOR SLIDE 139:

Possible Adaptation Responses – Insurance Program Proposal module

We can calculate the approximate cost of insurance for a given coverage level based on expected loss to be covered

First, the municipality needs to determine the range of expected loss to cover, which is a function of the range of insurable events covered by the policy, and the deductible under which the municipality will cover costs itself.

In this example, the range of events covered for coastal flooding is shown to be 100-150 year events, and the municipality has agreed to a deductible of 0.5% of it's GDP, meaning that the insurance policy will only cover losses above that level. This means that the insurer will be covering the amount between the deductible and the total expected loss for that range of events, which translates to a .05M annual insurance premium for the coverage.

Given that expected loss coverage, an estimate for the total cost of the insurance is possible. Because of the uncertainty of predictions required for these events, insurers will charge a "risk premium" that is some multiple of the expected loss covered. In this case, the risk premium multiplier for ~125 year events is ~5.0x, for a risk premium of .19 M. This is added to the expected loss covered to produced a total cost of insurance of .24 M.

NOTES FOR SLIDE 140:

Possible Adaptation Responses – Insurance Program Proposal module

Total annual cost of insurance can be calculated in three steps

This page displays a more detailed explanation of the total cost of insurance concept from the previous page.

The first step shown is to select a range of events to cover, and a deductible under which the municipality will cover itself.

The second step is to identify the risk premium multiplier that corresponds with that coverage range.

The third step is to calculate the total cost of insurance by multiplying the total expected loss covered by the risk premium multiplier to get the risk premium. The total expected loss covered and the risk premium are then added together to generate the total cost of insurance.

NOTES FOR SLIDE 141:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook – Coastal flooding

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Maputo in considering it's likely insurance cost for coastal flooding.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

This will prepare the municipality for negotiations with insurers on the purchase of a policy for extreme event coverage.

NOTES FOR SLIDE 142:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook – Inland flooding

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Maputo in considering it's likely insurance cost for inland flooding.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

This will prepare the municipality for negotiations with insurers on the purchase of a policy for extreme event coverage.

NOTES FOR SLIDE 143:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook – Wind damage

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Maputo in considering it's likely insurance cost for wind damage.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

This will prepare the municipality for negotiations with insurers on the purchase of a policy for extreme event coverage.

NOTES FOR SLIDE 144:

Possible Adaptation Responses – Insurance Program Proposal module

Cost of insurance for Maputo by 2030 could range from USD 11 million to USD 35 million, depending on the coverage scenario selected

Two different coverage scenarios are described here. The first (the "bulletproof") has a wider range of events covered (50-150 year events), and a lower deductible – 0.5% of GDP. The second (the "average") chooses a narrower range of events to cover (100-150 year events only) and a higher deductible - 2.0% of GDP.

Using the playbooks for each hazard type on the previous pages to calculate the total cost of insurance, the annual costs were identified and added in the bars on the right for each scenario.

Lastly, the Cost-benefit ratios were calculated for each insurance policy, showing the amount paid for the policy divided by the estimated payouts. Because of the large risk premiums for these policies, the cost benefit ratios for both coverage scenarios are quite poor (meaning much greater than 1), particularly when compared with other direct prevention measures.

A Adapta	tion measures long	J list: Coastal flooding (2/	4) Included in cost curve	Low Me	M V B V Q dium High
	Measure	Description	Engineering	Local authority	Community
Infrastructure/ asset based responses					
	2A Retrofit important buildings	Retrofit important buildings in hotspots with unbonded lateral bracing to strengthen and also allow for flexible movement, decreasing likelihood of catastrophic brittle collapse			
Technological/ optimisation	2B Build mobile barriers	Install moveable barriers that can be erected prior to expected storm surge, and stowed to preserve aesthetics of coastline between storms	\bigcirc		
responses	20 Coastal floodproofing	Upgrade commercial and residential buildings below 3m elevation with floodproofing measures (e.g. waterproof sealing, blocking doorways)			
	2D Improve storm detections system	Review current storm/sea level detection systems and optimize by installing additional detectors and monitoring unit			
Systemic/ behavioral responses					
Financial responses					
SOURCE: INGC Pha	ase II Theme 3; MNRE; UNESCO; UNE	P; experts interviews			149

RESPONDING TO CLIMATE CHANGE IN MOZAMBIQUE

SLIDE 151

BEIRA	ion measures long	list: Coastal flooding (3/	4) Included in cost curve		M B Q dium High
	•		Feasibility		
	Measure	Description	Engineering	Local authority	Community
Infrastructure/ asset based responses					
Technological/	3A Sandbagging	Distribute sandbags for disaster preparedness and replace after each major event			
optimisation responses	3B Flood-adapt home usage	Require flood-adapted interior fittings, primarily by moving all electrical connections and panels up (to second story, or to purpose-built platform) for residential and commercial buildings below 4m		•	
	3C Revive reef system	Identify and minimise anthropogenic stresses such as pollution on coral reefs and encourage their recovery			
Systemic/	3D Coastal zoning	Restrict construction in high-risk zones and/or relocate vulnerable populations to safer areas		\bigcirc	
responses	3E Incentivise movement uphill	Incentivise households to move uphill away from hazard zone		\bigcirc	\bigcirc
	3F Improve disaster response	Review current disaster response plan and adapt to include proper coastal flooding response procedures			
Financial responses	Set up ICZM (Integrated Coastal Zone Management)	Set up a National cooperative approach to conserve and develop coast economically, socially, and environmentally (e.g. Australia)			
SOURCE: INGC Phas	e II Theme 3; MNRE; UNESCO; UNEP	; experts interviews			150

A Adapta	tion measures long	list: Coastal flooding (4/	4) Included ir cost curve		dium High
			Feasibility		
	Measure	Description	Engineering	Local authority	Community
Infrastructure/ asset based responses					
Technological/ optimisation responses					
Systemic/ behavioral responses					
	4A Mandatory individual risk transfer	Require all home- and business-owners to insure their property, including buildings and contents, with appropriate penal measures for non- compliance		\bigcirc	\bigcirc
Financial responses	4B Risk transfer at international level	Insurance designed to protect whole of country against the sudden impact of rare but extremely severe events (reinsurance, catastrophe bonds like Worldbank MultiCat, etc.)			
	Contingency capital/ national disaster fund	National disaster relief fund, accrued against future rebuilding costs			
SOURCE: INGC Pha	ase II Theme 3; MNRE; UNESCO; UNEP	; experts interviews			151

12 ו	measures (1/2)			Feasibili	ty	
Hazard	Measure		Description	Geographic focus	Engin- eering	Local authority	Comm- unity
Inland flood- ing	• Ir zı	nland oning	 Restrict construction in high-risk zones and/or relocate vulnerable populations to safer areas 	 Poor inland flood prone neighborhoods 			
	·B	uilding odes	 Improve construction in risk zones to reduce vulnerability to flooding 	 Chota, Mucurungo 			
	- Li d	ocal rainage	 Construct canals and reservoirs to facilitate rapid and controlled drainage in inland areas 	 Chota, Esturro, Mananga, Matacuane 			
	• La re m	and bank einforce- nent	 Reinforce land banks to avoid erosion caused by heavy rains 	 Steep land banks in rich areas 			
Coastal flood- ing (1/2)	C C Z	oastal oning	 Restrict construction in high-risk zones and/or relocate vulnerable populations to safer areas 	 Poor coastal flood prone neighborhoods 	•	\bigcirc	٠
	• M re	langrove evival	 Replant and maintain mangrove areas to protect the coast 	 Praia Nova 			

12 r	neasures	s (2/2)			Feasibility		
lazard	Measure		Description	Geographic focus	Engin- eering	Local authority	Comm- unity
Coastal flood- ing (1/2)		Coastal flood- proofing	 Renovate buildings in high-risk zones to ensure flood resistance 	 Rich houses at < 3m elevations across municipality 			
		Sea walls	 Construct 3m-high sea walls to protect the coast, behind the beach but in front of structures 	 Palmeiras, Chaimite, Pioneiros, Ponta-Gea 			
		Beach nourishment	 Import or relocate sand from elsewhere to keep beaches at constant width despite erosion 	 Palmeiras Coast 	\bigcirc		
		Sea Wall / Groyne rehab	 Repair existing sea wall infrastructure to better limit storm surge and to control erosion 	 Palmeiras 			
Epid- emics		Bed net distribution	 Avoid mosquito bites during the night by sleeping under mosquito nets treated with long- lasting insecticide 	 Throughout municipality 			•
	4	Indoor residual spraying ¹	 Avoid mosquito bites indoors by spraying walls and ceilings with long- lasting insecticides 	 Throughout municipality 			

NOTES FOR SLIDE 156:

Response measures – Shortlist of adaptation measures module

Analyses show that short-listed measures could avert up to 60-70 USD millions of expected loss by 2030 with cost-benefit ration of 65 to 75%

This "cost curve" charts the most cost effective actions that Beira could take in order avoid climate-caused losses by 2030.

The x axis shows the expected losses that will be incurred by Beira by 2030. The three lines all the way to the right are the total expected losses under the three climate scenarios – Current Climate, Moderate CC and High CC.

The width of each bar on the cost curve represents the losses that would be avoided if the measure was put into place. Land drainage, for example, would avoid the most losses of all the measures. The bars are colored according to the type of risk the measure helps avoid (e.g., orange for inland flooding).

The y axis is the cost-benefit ratio for each measure, meaning how much the measure costs to implement relative to the benefits (the avoided costs from climate change) it produces. Measures with a C/B ratio of less than 1 produce more benefit than they cost. The bars are sorted in order of increasing cost to benefit, meaning that the ones on the left produce the most benefit for their cost while the ones to the right produce the least benefit for the most cost.

This curve notes the Expected Loss Averted by 2030 at USD 60-70 M, the sum of the costs avoided (the width of the bar) of all measures with a C/B Ratio less than 1.5, the proposed cut-off point for implementing a measure. The average of C/B ratios of the implemented measures is show to be 65 - 75%.

High ²			Moderate			Cur	rent climate	9 ²		 Key parameters Discount rate: 7%
Risk	Measure	Туре	2011	2012	2013		2030	NPV	C/B	 Time horizon: 20 y
Inland flooding	Inland zoning	Costs	2,208	40	40	40	2,621	0.05	Unit: 2010 US dolla	
		Benefits		1,919	2,333		9,365	51,786	0.05	Cost-benefit ratio
	Building codes	Costs	1,032	0	0		0	1,032	1	Calculated as the net
		Benefits		1,140	1,397		5,753	32,776	0.03	present value of costs
	Local drainage	Costs	30,000	1,500	1,500		1,500	45,503	0.24	over the net present
		Benefits	i	6,946	8,454		34,087	188,204	0.24	value of benefits acro
Coastal flooding	Coastal zoning	Costs	10,716	40	40		40	11,130	6.58	20 years
		Benefits		41	58		345	1,691 🛓		1
	Mangrove revival	Costs	50	15	15		15	205	2.13	Costs ¹
		Benefits		0	1		24	96		 Initial capital
	Coastal flood-	Costs	22,208	0	0		0	22,208		investment occurs
	proofing	Benefits		545	827		5,618	26,642	0.83	year 1, subsequen
	New sea walls	Costs	76,270	3,814	3,814		3,814	115,685	112.68	recurring costs (e.
		Benefits		17	28		224	1,027		in years 2-20
	Groynes/Sea wall	Costs	23,000	1,150	1,150		1,150	34,886	0.62	 Costs are prelimina
	rehabilitation	Benefits		1,135	1,721		11,691	55,442	0.63	estimates to be
Epidemics	Coastal drainage	Costs	11,143	1,114	1,114		1,114	22,660	0.27	refined/updated by
		Benefits		1,704	2,585		17,557	83,258		planned Climate
	Beach nourishment	Costs	32,000	4,090	4,090		4,090	74,273	0.74	Change Know. Ctr
		Benefits		2,043	3,098		21,044	99,796		Damafita
	Bed net C distribution E	Costs	3,000	3,000	3,000		3,000	34,007	0.97	Benefits coloulate
		Benefits		2,291	2,417		4,553	35,097		
	Indoor residual spraying	Costs	2,181	2,181	2,181		2,181	24,722	0.67	averted in each year a
		Benefits		2.420	2.552		4,808	37,063		a result of adaptation

NOTES FOR SLIDE 161:

Possible Adaptation Responses – Insurance Program Proposal module

Beira can select its degree of insurance protection by choosing its deductible and which frequency of events to insure

This chart plots the return period of a catastrophe (how often it occurs) against the expected loss from the event.

Beira can avoid the damages of events occurring with a relatively high frequency costeffectively through adaptation measures. On the other end of the spectrum, there are events that occur only every several hundred years for which the municipality will need to rely on donor and international support.

In the middle of the spectrum are low probability, high impact events for which the municipality may want to transfer risk using a financial mechanism, e.g., an insurance policy. The municipality will need to determine how much risk to maintain on itself for these events, e.g., how high to set its deductible. As well, it must determine the range of events to cover with a risk transfer, e.g., events occurring ever 50 - 100 years, versus those occurring every 100 - 150 years.

SLIDE 162 BEIRA MBQ Financial measures can provide coverage for financial needs in less likely events - parametric insurance recommended Combination of parametric insurance and contingent financing can further reduce costs Indemnity insurance Parametric insurance Contingent financing "Traditional" insurance Credit lines contingent Insurance policy that Insurance program policy that pays out to occurrence of pays out an amount complements prevention actual economic losses depending on physical catastrophic events, measures and can have two incurred, above created with a relatively parameters of a goals catastrophe (e.g., wind deductible and up to the small upfront payment Ensure availability of funds limit agreed in the speed) that guarantees loan for emergency reaction and contract limits and pricing reconstruction in case of a less frequent event (return Matches insurance • Easy and quick to receive • Cheapest option before period higher that 10-20 payout to actual losses claims (no need for loss the event years) (low basic risk) assessment) Reduce effect of uncertainty Cheaper with less upfront of climate evolution by costs funding additional adaptation measures in Not a real "insurance" Needs process of loss Insurance payment may more pessimistic scenarios only provides access assessment, offering differ from actual losses (e.g., coastal flooding) dependent on credibility to credit if needed (despite being designed to mirror them) of processes for insurers/ reinsurers

SLIDE 163

SOURCE: INGC Phase II Theme 3

161

BEIRA C Insurance should cover most extreme events for the 3 hazards									
Moderate climate change scenario Insurance coverage scenario									
				"Bulletproof"	"Average"				
Hazard	Description	Potential parametric index		1 50-150-year events	100-150 year events				
Coastal flooding	Lower frequency	Maximum sea	Parametric Index	450 cm	465 cm				
	levels that overwhelm coastal defenses	port (cm above MSL ¹)	Expected loss	USD 0.8 MM	USD 0.3 MM				
Inland flooding	 Lower frequency inland fleading 	 Peak week 	Parametric Index	475 mm	530 mm				
	events not protected effectively by adaptation measures	(mm)	Expected loss	USD 1.3 MM	USD 0.3 MM				
Wind	 Tropical cyclones with wind speeds 	 Maximum wind speed (km/hr) 	Parametric Index	130 km/h	170 km/h				
damage	above 150 km/hr that cause substantial damage		Expected loss	USD 2.3 MM	USD 1.0 MM				
1 Mean sea level									
SOURCE: INGC Phase II Theme 3 163									

NOTES FOR SLIDE 164:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance should cover most extreme events for the 3 hazards

Beira could purchase insurance to protect itself against catastrophic losses associated with three major climate events.

Two levels of insurance are described, a "bulletproof" policy level that would cover the municipality against severe events projected to occur only every 50-150 years, and an "average" policy level that would only cover the events projected to occur once every 100-150 years.

For each level of insurance and each event type, a "parametric index" is listed, meaning an event that would trigger an automatic payout of the insurance coverage. For example, for the "bulletproof" policy for coastal flooding, the insurance would pay out automatically when sea level at port reaches 450cm above MSL.

Expected losses are also listed for each policy level – the losses are greater for the bulletproof policies because, while the triggering events are on average less severe for the 50-150 year events, they also are projected to occur more often.

NOTES FOR SLIDE 165:

Possible Adaptation Responses – Insurance Program Proposal module

We can calculate the approximate cost of insurance for a given coverage level based on expected loss to be covered

First, the municipality needs to determine the range of expected loss to cover, which is a function of the range of insurable events covered by the policy, and the deductible under which the municipality will cover costs itself.

In this example, the range of events covered for coastal flooding is shown to be 100-150 year events, and the municipality has agreed to a deductible of 0.5% of it's GDP, meaning that the insurance policy will only cover losses above that level. This means that the insurer will be covering the amount between the deductible and the total expected loss for that range of events, which translates to a USD 0.31 M annual insurance premium for the coverage.

Given that expected loss coverage, an estimate for the total cost of the insurance is possible. Because of the uncertainty of predictions required for these events, insurers will charge a "risk premium" that is some multiple of the expected loss covered. In this case, the risk premium multiplier for ~125 year events is ~5.0x, for a risk premium of 1.22 M. This is added to the expected loss covered to produced a total cost of insurance of 1.52 M.

NOTES FOR SLIDE 166:

Possible Adaptation Responses – Insurance Program Proposal module

Total annual cost of insurance can be calculated in three steps

This page displays a more detailed explanation of the total cost of insurance concept from the previous page.

The first step shown is to select a range of events to cover, and a deductible under which the municipality will cover itself.

The second step is to identify the risk premium multiplier that corresponds with that coverage range.

The third step is to calculate the total cost of insurance by multiplying the total expected loss covered by the risk premium multiplier to get the risk premium. The total expected loss covered and the risk premium are then added together to generate the total cost of insurance.

NOTES FOR SLIDE 167:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook – Coastal flooding

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Beira in considering it's likely insurance cost for coastal flooding.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

NOTES FOR SLIDE 168:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook - Inland flooding

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Beira in considering it's likely insurance cost for inland flooding.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

NOTES FOR SLIDE 169:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook – Wind damage

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Beira in considering it's likely insurance cost for Wind damage.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

NOTES FOR SLIDE 170:

Possible Adaptation Responses – Insurance Program Proposal module

Cost of insurance for Beira by 2030 could range from USD 6 million to USD 17 million, depending on the coverage scenario selected

Two different coverage scenarios are described here. The first (the "bulletproof") has a wider range of events covered (50-150 year events), and a lower deductible – 0.5% of GDP. The second (the "average") chooses a narrower range of events to cover (100-150 year events only) and a higher deductible - 2.0% of GDP.

Using the playbooks for each hazard type on the previous pages to calculate the total cost of insurance, the annual costs were identified and added in the bars on the right for each scenario.

Lastly, the Cost-benefit ratios were calculated for each insurance policy, showing the amount paid for the policy divided by the estimated payouts. Because of the large risk premiums for these policies, the cost benefit ratios for both coverage scenarios are quite poor (meaning much greater than 1), particularly when compared with other direct prevention measures.

QUELIMANE A Adaptation	n measures long list: In	land flooding (2/4)	Included in cost curve	Low Me	M B Q dium High
	Moasuro	Description	Feasibility		Community
Infrastructure/	2A Contingency design	Designing urban infrastructure to handle emergency scenarios			
responses	2B Outflow capacity increase	Increasing the overflow capacity of existing drainage systems or reservoirs to handle higher return period events			
	20 Divert water through new & existing water courses	Diverting excess water through new and existing waterways		\bullet	
	2D Regulatory power	Increasing regulatory power of municipal government to enforce building codes and zones			
Technological/ optimization responses	2E Flow monitoring	Installing system to monitor flows and levels of rivers and waterways so as to better predict flooding			
	2F Electrical system hardening	Redesigning/strengthening the electrical grid to withstand disruptions of major elements (sub- systems, lines, etc.) due to flooding events	\bullet		
	26 Flood resistant seeds (rice and sugar case)	Incentivize and distribute flood-resistant seeds for flood-prone agricultural areas		\bigcirc	
Systemic/ behavioral	Change building code for new construction	Revise building codes to include flood-resistant elements (e.g. elevated foundation, electrical wiring) for flood-prone areas			
responses	21 Change crop mix (diversity agriculture)	Diversify crop mix to increase resilience to inland flooding in agricultural areas			
Financial responses	2J Early warning monitoring system	Develop and install an early warning system for warning residents about impending flooding events			
SOURCE: INGC Phase	II Theme 3				175

QUELIMANE	on measures long	list: Inland flooding (3/4)	Included in cost curve		M B Q dium High
	Ū		Feasibility		
	Measure	Description	Engineering	Local authority	Community
Infrastructure/	3A Public performance data	Make transparent and publish public performance data on flooding preparedness and response			
responses	3B Emergency planning	Develop well-defined contingency plans for different types of flooding emergencies in vulnerable areas			
Technological/	3C Independent drainage board	Establish an independent body accountable to the local community for flood protection services provided		\bullet	
responses	3D Mandatory minimum drainage performance	Establishing a national code for the minimum drainage performance of buildings and infrastructure		\bullet	
	3E Appointment of "Principal Drainage Engineer"	Appoint a "principal drainage engineer" responsible for monitoring and maintaining drainage system			
	3F Early pumping	Installing pumping systems to begin draining flood- prone areas at the start of a flooding event			
Systemic/ behavioral	3G Monitor ground water level	Install systems to monitor ground water levels in order to better predict and warn against inland flooding			
responses	3H Good repair guide	Create guide for homeowners for flood repair best practices			
	3) Education in self help	Education campaign for citizens and communities in self-help as a tool for resilience in the face of floods			
	3J Online flooding A to Z	Create online directory and guide for flooding awareness and prevention		\bullet	
Financial responses	3K Change zoning policy/land use	Change land use zoning to limit construction in inland flood-prone zones			\bullet
	3L Emergency response plan	Creating a municipal plan for emergency response			
SOURCE: INGC Phase	e II Theme 3				176

			Feasibility		
	Measure	Description	Engineering	Local authority	Community
astructure/ et-based ponses					
hnological/	4A Polluter pays principle	Require countries most responsible for climate change to pay for flooding damages ¹		\bigcirc	
ptimization esponses	4B Drainage charging	Charge local residents for drainage improvement, maintenance, and services			\bigcirc
stemic/	Compulsory flood insurance	Obligate residents in flood-prone areas to purchase flood insurance against inland flooding			\bigcirc
sponses	D Individual flood insurance (index or indemnity based)	Guarantee the offering of individual flood insurance (either based on a precipitation indexes or actual damage levels)			
-'	4E Multi-National-Pooling solution	Join with neighboring nations to pool risk and insure against low-frequency, high-severity inland flooding events			
	4F Solution (e.g., weather derivatives)	Government-sponsored insurance scheme to protect against inland flooding risk			
ancial ponses	4G Contingent capital	Credit lines contingent on occurrence of catastrophic events, with a relatively small upfront payment that guarantees loan limits and pricing			
	4H Forgivable debt	Credit lines for disaster prevention and response whose debt is forgiven in the event of catastrophic events			
	4) Cash reserves	Government savings account set aside and reserved for use in the event of catastrophic events			

QUELIMA	NE				L	MBQ
A The 8 m	e filtering proc neasures (1/2)	ess resulted in a she	ort list of	Feasibili	ty	
Hazard	Measure	Description	Geographic focus	Engin- eering	Local authority	Comm- unity
Inland flood- ing	Inland zoning	 Restrict construction in high-risk zones and/or relocate vulnerable populations to safer areas 	 Icídua, Chuabo-Dembe 			
	Buildir codes	 Improve construction in risk zones to reduce vulnerability to flooding 	 Flood-prone rich households 			
	Inland draina	 Construct canals and reservoirs to facilitate rapid and controlled drainage in inland areas 	 Chuabo- Dembe, MCA drainage project zone 			
	• River mangr reviva	Replant and maintain mangrove areas to protect areas near flood-prone rivers	▪ Icídua			
SOURCE: ING	GC Phase II Theme 3					178

8 n	neasures	(2/2)			Feasibili	ty	
azard	Measure		Description	Geographic focus	Engin- eering	Local authority	Comm- unity
Wind da- nage		 Wind- retrofit buildings 	 Modify existing buildings to improve wind-resistance 	 Wind-prone poor households 			
	and the second	 Wind building codes 	 Construct new houses according to most recent knowledge and buildings standards 	 Wind-prone rich households 			
Epid- emics		 Bed net distribution 	 Avoid mosquito bites during the night by sleeping under mosquito nets treated with long- lasting insecticide 	 Throughout municipality 		٠	•
	A-	 Indoor residual spraying¹ 	 Avoid mosquito bites indoors by spraying walls and ceilings with long- lasting insecticides that kill mosquitoes resting on them 	 Throughout municipality 			

NOTES FOR SLIDE 182:

Response measures – Shortlist of adaptation measures module

Analyses show that short-listed measures could avert up to 20 USD millions of expected loss by 2030 with cost-benefit ration of 65 to 75%

This "cost curve" charts the most cost effective actions that Quelimane could take in order avoid climate-caused losses by 2030.

The x axis shows the expected losses that will be incurred by Quelimane by 2030. The three lines all the way to the right are the total expected losses under the three climate scenarios – Current Climate, Moderate CC and High CC.

The width of each bar on the cost curve represents the losses that would be avoided if the measure was put into place. Land drainage, for example, would avoid the most losses of all the measures. The bars are colored according to the type of risk the measure helps avoid (e.g., orange for inland flooding).

The y axis is the cost-benefit ratio for each measure, meaning how much the measure costs to implement relative to the benefits (the avoided costs from climate change) it produces. Measures with a C/B ratio of less than 1 produce more benefit than they cost. The bars are sorted in order of increasing cost to benefit, meaning that the ones on the left produce the most benefit for their cost while the ones to the right produce the least benefit for the most cost.

This curve notes the Expected Loss Averted by 2030 at USD 20 M, the sum of the costs avoided (the width of the bar) of all measures with a C/B Ratio less than 1.5, the proposed cut-off point for implementing a measure. The average of C/B ratios of the implemented measures is show to be 65 - 75%.

High ²			Moderate			Cu	rrent climate	2		Key parameters	
Risk	Measure	Type	2011	2012	2013		2030	NPV	C/B	 Time horizon: 20 yr 	
Inland flooding	Indoor residual spraying	Costs	14,258	164	164		164	15,951	0.64	Unit: 2010 US dolla	
	Building codes	Costs Benefits	, 1,041	0 105	0 126	 	4,494 0 490	1,041 2,844	0.37	Cost-benefit ratio Calculated as the net present value of costs	
	Local drainage	Costs Benefits	10,000 s	1,000 2,136	1,000 2,601		1,000 10,495	30,336 57,929	0.52	over the net present value of benefits acro	
	Mangrove revival	Costs Benefits	200	24 950	24 1,156		24 4,664	448 25,746	0.02	Costs ¹	
Epidemics	Bed net distribution	Costs Benefits	3,000 S	3,000 1,727	3,000 1,820		3,000 3,396	34,007 26,308	1.29	 Initial capital investment occurs 	
	Indoor residual spraying	Costs Benefits	1,792 S	1,792 2,901	1,792 3,057		1,792 5,705	20,315 44,198	0.46	year 1, subsequent recurring costs (e.g	
Wind damage	Wind-retrofit buildings	Costs Benefits	91,408 S	5,078 487	5,078 612		5,078 2,742	143,895 14,613	9.85	 years 2-20 Costs are prelimina 	
	Wind building codes	Costs Benefits	27,083 S	1,178 701	1,178 877		1,178 3,874	39,254 20,743	1.89	estimates to be refined/updated by planned Climate Change Know. Ctr.	
										Benefits Benefits calculate economic losses aver in each year as a resu of adaptation	

NOTES FOR SLIDE 187:

Possible Adaptation Responses – Insurance Program Proposal module

Quelimade can select its degree of insurance protection by choosing its deductible and which frequency of events to insure

This chart plots the return period of a catastrophe (how often it occurs) against the expected loss from the event.

Quelimade can avoid the damages of events occurring with a relatively high frequency cost-effectively through adaptation measures. On the other end of the spectrum, there are events that occur only every several hundred years for which the municipality will need to rely on donor and international support.

In the middle of the spectrum are low probability, high impact events for which the municipality may want to transfer risk using a financial mechanism, e.g., an insurance policy. The municipality will need to determine how much risk to maintain on itself for these events, e.g., how high to set its deductible. As well, it must determine the range of events to cover with a risk transfer, e.g., events occurring ever 50 - 100 years, versus those occurring every 100 - 150 years.

	QUELIMANE C Insurance should cover most extreme events for the 2 hazards								
Moderate	climate change scenario)		Insurance covera	ige scenario				
				"Bulletproof"	"Average"				
Hazard	Description	Potential parametric index		1 50-150-year events	2 100-150 year events				
Inland	 Lower frequency inland flooding 	 Peak week precipitation 	Parametric Index	400 mm	450 mm				
flooding	events not protected effectively by adaptation measures	(mm)	Expected loss	USD 0.6 MM	USD 0.2 MM				
Wind	 Tropical cyclones with wind speeds 	 Maximum wind speed (km/hr) 	Parametric Index	x 180 km/h	230 km/h				
uanage	above 150 km/hr that cause substantial damage		Expected loss	USD 3.6 MM	USD 1.8 MM				
SOURCE: ING	GC Phase II Theme 3				189				

NOTES FOR SLIDE 190:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance should cover most extreme events for the 2 hazards

Quelimane could purchase insurance to protect itself against catastrophic losses associated with two major climate events.

Two levels of insurance are described, a "bulletproof" policy level that would cover the municipality against severe events projected to occur only every 50-150 years, and an "average" policy level that would only cover the events projected to occur once every 100-150 years.

For each level of insurance and each event type, a "parametric index" is listed, meaning an event that would trigger an automatic payout of the insurance coverage. For example, for the "bulletproof" policy for inland flooding, the insurance would pay out automatically when peak week precipitation reaches 400mm.

Expected losses are also listed for each policy level – the losses are greater for the bulletproof policies because, while the triggering events are on average less severe for the 50-150 year events, they also are projected to occur more often.

NOTES FOR SLIDE 191:

Possible Adaptation Responses – Insurance Program Proposal module

We can calculate the approximate cost of insurance for a given coverage level based on expected loss to be covered

First, the municipality needs to determine the range of expected loss to cover, which is a function of the range of insurable events covered by the policy, and the deductible under which the municipality will cover costs itself.

In this example, the range of events covered for inland flooding is shown to be 100-150 year events, and the municipality has agreed to a deductible of 0.5% of it's GDP, meaning that the insurance policy will only cover losses above that level. This means that the insurer will be covering the amount between the deductible and the total expected loss for that range of events, which translates to a USD 0.15 M annual insurance premium for the coverage.

Given that expected loss coverage, an estimate for the total cost of the insurance is possible. Because of the uncertainty of predictions required for these events, insurers will charge a "risk premium" that is some multiple of the expected loss covered. In this case, the risk premium multiplier for ~125 year events is ~5.0x, for a risk premium of 0.60 M. This is added to the expected loss covered to produced a total cost of insurance of 0.76 M.

NOTES FOR SLIDE 192:

Possible Adaptation Responses – Insurance Program Proposal module

Total annual cost of insurance can be calculated in three steps

This page displays a more detailed explanation of the total cost of insurance concept from the previous page.

The first step shown is to select a range of events to cover, and a deductible under which the municipality will cover itself.

The second step is to identify the risk premium multiplier that corresponds with that coverage range.

The third step is to calculate the total cost of insurance by multiplying the total expected loss covered by the risk premium multiplier to get the risk premium. The total expected loss covered and the risk premium are then added together to generate the total cost of insurance.

NOTES FOR SLIDE 193:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook – Inland flooding

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Quelimane in considering it's likely insurance cost for inland flooding.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

NOTES FOR SLIDE 194:

Possible Adaptation Responses – Insurance Program Proposal module

Insurance cost calculation cookbook - wind damage

Using data on projected return periods for different loss level events by hazard type, we have constructed a playbook for Quelimane in considering it's likely insurance cost for wind damage.

Using the same methodology described on previous pages, the municipality can use this curve to determine its preferred range of coverage and deductible, identify the loss covered and the risk premium multiplier, and calculate the total cost of insurance.

NOTES FOR SLIDE 195:

Possible Adaptation Responses – Insurance Program Proposal module

Cost of insurance for Quelimane by 2030 could range from USD 9 million to USD 17 million, depending on the coverage scenario selected

Two different coverage scenarios are described here. The first (the "bulletproof") has a wider range of events covered (50-150 year events), and a lower deductible – 0.5% of GDP. The second (the "average") chooses a narrower range of events to cover (100-150 year events only) and a higher deductible - 2.0% of GDP.

Using the playbooks for each hazard type on the previous pages to calculate the total cost of insurance, the annual costs were identified and added in the bars on the right for each scenario.

Lastly, the Cost-benefit ratios were calculated for each insurance policy, showing the amount paid for the policy divided by the estimated payouts. Because of the large risk premiums for these policies, the cost benefit ratios for both coverage scenarios are quite poor (meaning much greater than 1), particularly when compared with other direct prevention measures.

Table of	f contents	
	Executive summary	
	Economics of climate adaptation methodology	
	Baseline vulnerability and risk characterization (D1)	
	Climate change adaptation planning and action best practices (D2)	
	Key mitigation and adaptation measures (D3)	
	City disaster risk management system and strategy (D4)	
	Appendix	
Note: D1, D2, D	03, and D4 are the 4 deliverables from the Terms of Reference	
		195

NOTES FOR SLIDE 204:

City Disaster Risk Management System and Strategy – Ambition Level

This implementation proposal builds off of discussion on methods of transferring risk for some events for which there are no cost-effective preventative measures through an insurance policy.

This uses the "Average" scenario described earlier, with a narrow range of events coverage (100-150 year events only) and a higher deductible - 2.0% of GDP.

Using the playbooks developed for each hazard type to calculate the total cost of insurance, the annual costs were identified and added to achieve the "Expected Loss to be recovered", the risk premium multiplier was determined based on the range of coverage, and the risk premium was calculated to add to the expected loss for the total insurance cost.

MAPUTO 3 Ambition level can vary according to insurance coverage level selected and adaptation measures implemented USD millions, moderate climate change scenario							
		Insurance cov	verage scenario	_			
		"Bulletproof"	2 "Average"	_			
		Capex1:508	Capex: 389				
	Measures with CB<1.5	ELA ¹ : 101	ELA: 95				
		Capex: 194	Capex: 74				
Adaptation measures implemented	Measures with CB<1	ELA: 83	ELA: 77				
		Capex: 216	Capex: 97				
	Measures with CB<0.5	ELA: 29	ELA: 23				
1 Capital expenditure in 2 Expected loss averted,	1 Capital expenditure in first 5 years 2 Expected loss averted, 2030						
SOURCE: INGC phase I	SOURCE: INGC phase II theme 3 204						

NOTES FOR SLIDE 205:

City Disaster Risk Management System and Strategy – Ambition Level

Ambition level can vary according to insurance coverage selected and adaptation measures implemented

This chart takes the portfolio view for the municipality to show various capital expenditures required for adaptation measures and insurance purchases, and the expected benefits at both:

Different levels of adaptation measure implementation by cost-benefit ratio Different intensities of insurance coverage

Both the capital expenditure required and the expected climate change losses averted rise as one moves up the chart to higher levels of adaptation measures, and as one moves from "average" insurance coverage to "bulletproof" insurance coverage.

NOTES FOR SLIDE 207:

City Disaster Risk Management System and Strategy – Implementation Plan

Implementation Plan for the next 5 Years

Assuming the municipality continues with the ambition level of decreasing the costs of climate change as described in this section, this 5-year plan maps out the major priorities for each year to set the municipality on the path to halve the current % GDP impacts of climate change by 2030.

This plan includes a combination of Strategy development and planning Tactical planning and funding identification Timing and geographic focus for high priority adaptation measures Emphasis on pushing already planned / funded measures Increased enforcement management oversight of new measures

NOTES FOR SLIDE 215:

City Disaster Risk Management System and Strategy – Ambition Level

This implementation proposal builds off of discussion on methods of transferring risk for some events for which there are no cost-effective preventative measures through an insurance policy.

This uses the "Average" scenario described earlier, with a narrow range of events coverage (100-150 year events only) and a higher deductible - 2.0% of GDP.

Using the playbooks developed for each hazard type to calculate the total cost of insurance, the annual costs were identified and added to achieve the "Expected Loss to be recovered", the risk premium multiplier was determined based on the range of coverage, and the risk premium was calculated to add to the expected loss for the total insurance cost.

BEIRA 3 Ambition and adap USD millions, more	level can var station measu	ry according to insuranc ires implemented	e coverage level selecto	ed		
		Insurance cov	verage scenario	_		
		1 "Bulletproof"	2 "Average"			
		Capex ¹ :225	Capex: 173			
	Measures with CB<1.5	ELA ¹ : 68	ELA: 66			
		Capex: 176	Capex: 124			
Adaptation measures implemented	Measures with CB<1	ELA: 59	ELA: 56			
		Capex: 123	Capex: 71			
	Measures with CB<0.5	ELA: 38	ELA: 35			
1 Capital expenditure in 2 Expected loss averted,	1 Capital expenditure in first 5 years 2 Expected loss averted, 2030					
SOURCE: INGC phase I	I theme 3			215		

NOTES FOR SLIDE 216:

City Disaster Risk Management System and Strategy – Ambition Level

Ambition level can vary according to insurance coverage selected and adaptation measures implemented

This chart takes the portfolio view for the municipality to show various capital expenditures required for adaptation measures and insurance purchases, and the expected benefits at both:

Different levels of adaptation measure implementation by cost-benefit ratio Different intensities of insurance coverage

Both the capital expenditure required and the expected climate change losses averted rise as one moves up the chart to higher levels of adaptation measures, and as one moves from "average" insurance coverage to "bulletproof" insurance coverage.

BEIRA	Strategy should i	ncorporate projects already	underway or fu	nded
	Donor/actor	Description	Funding	Approximate start date
ion	 Cooperação Suiça 	Rehabilitation of sea wall and 20 groynes along the Palmeiras coastline	EUR 250,000 in 2010 EUR 3 million in 2011	2010-11
protecti	 World Bank 	Rehabilitation of sea walls and coastal protection infrastructure	~USD 20 million	~2012
astal	 MICOA 	Rehabilitation of sea walls	USD 35,000	2011-12
ပိ	• GIZ	Sand dune revegetation strengthening neighborhood early-warning system	EUR 650,000	Jul-Dec 2011
ation	 World Bank 	Rehabilitation of A2 drainage canal in Esturro/Mananga	USD 20 million	~Nov 2011
ge and sanit	 Arab Bank for Economic Development in Africa (BADEA) 	Rehabilitation of A1 drainage canals in Chota	USD 10 million	2012?
Draina	 Unknown 	Proposal for reopening of Chiveve river to aid drainage in Ponta Gea/ Chaimite	USD 1-13 million required	-
SOURCI	E: Interviews with municipal offici	als		217

NOTES FOR SLIDE 219:

City Disaster Risk Management System and Strategy – Implementation Plan

Implementation Plan for the next 5 Years

Assuming the municipality continues with the ambition level of decreasing the costs of climate change as described in this section, this 5-year plan maps out the major priorities for each year to set the municipality on the path to halve the current % GDP impacts of climate change by 2030.

This plan includes a combination of Strategy development and planning Tactical planning and funding identification Timing and geographic focus for high priority adaptation measures Emphasis on pushing already planned / funded measures Increased enforcement management oversight of new measures Groundwork for measure implementation, e.g. formalization of settlements

NOTES FOR SLIDE 227:

City Disaster Risk Management System and Strategy – Ambition Level

This implementation proposal builds off of discussion on methods of transferring risk for some events for which there are no cost-effective preventative measures through an insurance policy.

This uses the "Average" scenario described earlier, with a narrow range of events coverage (100-150 year events only) and a higher deductible - 2.0% of GDP.

Using the playbooks developed for each hazard type to calculate the total cost of insurance, the annual costs were identified and added to achieve the "Expected Loss to be recovered", the risk premium multiplier was determined based on the range of coverage, and the risk premium was calculated to add to the expected loss for the total insurance cost.

QUELIMANE 3 Ambition level can vary according to insurance coverage level selected and adaptation measures implemented USD millions, moderate climate change scenario						
		Insurance cov	verage scenario			
		"Bulletproof"	2 "Average"	_		
		Capex ¹ :134	Capex: 95			
	Measures with CB<1.5	ELA ¹ : 24	ELA: 21			
		Capex: 110	Capex: 71			
Adaptation measures implemented	Measures with CB<1	ELA: 19	ELA: 16			
		Capex: 110	Capex: 71			
	Measures with CB<0.5	ELA: 19	ELA: 16			
1 Capital expenditure in 2 Expected loss averted	first 5 years , 2030					
SOURCE: INGC phase I	SOURCE: INGC phase II theme 3 227					

NOTES FOR SLIDE 228:

City Disaster Risk Management System and Strategy – Ambition Level

Ambition level can vary according to insurance coverage selected and adaptation measures implemented

This chart takes the portfolio view for the municipality to show various capital expenditures required for adaptation measures and insurance purchases, and the expected benefits at both:

Different levels of adaptation measure implementation by cost-benefit ratio Different intensities of insurance coverage

Both the capital expenditure required and the expected climate change losses averted rise as one moves up the chart to higher levels of adaptation measures, and as one moves from "average" insurance coverage to "bulletproof" insurance coverage.

	Donor/actor	Description	Funding	Approximate start date
	 Millennium Challenge Account (MCA) 	Rehabilitation and expansion of ~25km of drainage canals in most flood-prone urban neighborhoods	USD 22 millions	Oct. 2011 (ending Sept. 2013)
1	 MICOA (proposed by no funding obtained) 	Replanting and planting of river mangroves along Icídua neighborhood	USD 50k-100k	Unknown
	 MICOA (proposed by no funding obtained) 	Installation of groynes to prevent erosion along river banks in Chuabo- Dembe neighborhood	USD 2.7 million	Unknown
,	 Millennium Challenge Account (MCA) 	Mapping and regularization of land tenure in urban neighborhoods	USD 5 million	June 2010 (ending Sept 2013)
	 Municipality of the City of Quelimane 	Updating of city master plan (current master plan from 1998 expired in 2008)	Unknown	Unknown

NOTES FOR SLIDE 231:

City Disaster Risk Management System and Strategy – Implementation Plan

Implementation Plan for the next 5 Years

Assuming the municipality continues with the ambition level of decreasing the costs of climate change as described in this section, this 5-year plan maps out the major priorities for each year to set the municipality on the path to halve the current % GDP impacts of climate change by 2030.

This plan includes a combination of Strategy development and planning Tactical planning and funding identification Timing and geographic focus for high priority adaptation measures Emphasis on pushing already planned / funded measures Increased enforcement management oversight of new measures Groundwork for measure implementation, e.g. formalization of settlements

Table of contents	
Executive summary	
Economics of climate adaptation methodology	
Baseline vulnerability and risk characterization (D1)	
Climate change adaptation planning and action best practices (D2)	
Key mitigation and adaptation measures (D3)	
City disaster risk management system and strategy (D4)	
Appendix	
Note: D1, D2, D3, and D4 are the 4 deliverables from the Terms of Reference	
	232

SLIDE 234

October 2012, p 152

Sea level rise	Sea surface tempe	rature Air te	mperature	Pre	cipitation	
Downscaled models pre rainfall	edict an increase in a	average	leading t Maputo	o 3 climate	e change sco	enarios for
Additional mm of peak we 2030 (vs. 1980-2005 ave 0,60,70,7	eekly rainfall during D, rage)	5,5 	Additional n DJFM sease average)	nm of peak on by 2030 0	weekly rainfa (vs. 1980-19 1,2	all during 99 3,3
IPSL/ MPI/ CNRM/C CM4 ECH- CM3 C AM5	GFDL/ CSIRO/GISS CM2.0 MK3.5	CCMA/ CGCM3.1		Today's climate	Moderate CC	High CC
Downscaled gl	obal circulation mod	lel	Assump- tion	No change	Median	90th per- centile
				Climate	change sce	enario

<u> </u>	Maputo	Beira	Quelimane	
		Climate scenario		
		Current climate	Moderate change	Very high change ³
	Scenario description	 No change from 1980- 99 levels¹ 	 Median of down-scaled GCMs² 	 90th percentile of downscaled GCMs
	Sea Level Rise (SLR)	 No change from 1980- 1999 levels 	 15cm increase by 2030 	 45cm increase by 2030
	Sea Surface Temperature (SST)	 No change from 1980- 1999 levels 	 1.3°C increase by 2030 	 2.0°C increase by 203
	Air temperature	 No change from 1980- 1999 levels 	 1.0°C increase by 2030 	 1.2°C increase by 203
	Precipitation	 No change from 1980- 1999 levels 	 3.6mm of additional precipitation/week during Dec-Mar season 	 8.2mm of additional precipitation/week during Dec-Mar seaso

	Maputo	Beira	Quelimane	
		Climate scenario		
		Current climate	Moderate change	Very high change ³
	Scenario description	 No change from 1980- 99 levels¹ 	 Median of down-scaled GCMs² 	 90th percentile of downscaled GCMs
169	Sea Surface Temperature (SST)	 No change from 1980- 1999 levels 	 1.3°C increase by 2030 	 2.0°C increase by 2030
	Air temperature	 No change from 1980- 1999 levels 	0.9°C increase by 2030	 1.2°C increase by 2030
5	Precipitation	 No change from 1980- 1999 levels 	 3.0mm of additional precipitation/week during Dec-Mar season 	 8.1mm of additional precipitation/week during Dec-Mar seasor
Sea or 1 Glo	a level rise not considered for 980-2005, depending on clir bal circulation models	r Quelimane given that it is located 20kn nate model baseline	n inland and is not a coastal city	

Maputo	Beira		Quelimane		
Scenario	Maximum hei – Example for	ght above cur 1000-year ret	rent mean sea urn period	level in 2030	
	Mean spring tide	Global SLR ¹	Subsidence	1000-year storm surge	Total
Today's climate	150	0	0	165	315
Moderate CC	150	15.4	0	175 ²	340
High CC	150	45.5	0	175 ²	370

Adaptation	measures long list	:: Inland flooding (2/4)	Included in cost curve	Low Me	dium 🔵 High
-	-		Feasibility		
	Measure	Description	Engineering	Local authority	Community
Infrastructure/	2A Contingency design	Designing urban infrastructure to handle emergency scenarios			
responses	2B Outflow capacity increase	Increasing the overflow capacity of existing drainage systems or reservoirs to handle higher return period events			
	2C Divert water through new & existing water courses	Diverting excess water through new and existing waterways			
	2D Regulatory power	Increasing regulatory power of municipal government to enforce building codes and zones			
Technological/ optimization responses	2E Flow monitoring	Installing system to monitor flows and levels of rivers and waterways so as to better predict flooding			
	2F Electrical system hardening	Redesigning/strengthening the electrical grid to withstand disruptions of major elements (sub- systems, lines, etc.) due to flooding events	\bullet		
	2G Flood resistant seeds (rice and sugar case)	Incentivize and distribute flood-resistant seeds for flood-prone agricultural areas		\bigcirc	
Systemic/ behavioral	2H Change building code for new construction	Revise building codes to include flood-resistant elements (e.g. elevated foundation, electrical wiring) for flood-prone areas			
responses	2) Change crop mix (diversity agriculture)	Diversify crop mix to increase resilience to inland flooding in agricultural areas			
Financial responses	2) Early warning monitoring system	Develop and install an early warning system for warning residents about impending flooding events			
SOURCE: INGC Phase	II Theme 3				287

aptation	measures long list	: Inland flooding (4/4)	cost curve		
			Feasibility		
	Measure	Description	Engineering	Local authority	Community
frastructure/ sset-based esponses					
Fechnological/ optimization responses	4A Polluter pays principle	Require countries most responsible for climate change to pay for flooding damages			
	4B Drainage charging	Charge local residents for drainage improvement, maintenance, and services		\bullet	\bigcirc
Systemic/ behavioral esponses	Compulsory flood insurance	Obligate residents in flood-prone areas to purchase flood insurance against inland flooding			\bigcirc
	D Individual flood insurance (index or indemnity based)	Guarantee the offering of individual flood insurance (either based on a precipitation indexes or actual damage levels)			
Financial responses	4E Multi-National-Pooling solution	Join with neighboring nations to pool risk and insure against low-frequency, high-severity inland flooding events			
	4F Governmental insurance solution (e.g., weather derivatives)	Government-sponsored insurance scheme to protect against inland flooding risk			
	4G Contingent capital	Credit lines contingent on occurrence of catastrophic events, with a relatively small upfront payment that guarantees loan limits and pricing			
	4H Forgivable debt	Credit lines for disaster prevention and response whose debt is forgiven in the event of catastrophic events			
	4) Cash reserves	Government savings account set aside and reserved for use in the event of catastrophic events			

RESPONDING TO CLIMATE CHANGE IN MOZAMBIQUE

SLIDE 293

	Measure	Description	Engineering	Local authority	Community
frastructure/ sset based esponses					
	3A Sandbagging	Distribute sandbags for disaster preparedness and replace after each major event			
responses	3B Flood-adapt home usage	Require flood-adapted interior fittings, primarily by moving all electrical connections and panels up (to second story, or to purpose-built platform) for residential and commercial buildings below 4m			
Systemic/ behavioral responses	30 Revive reef system	ldentify and minimise anthropogenic stresses such as pollution on coral reefs and encourage their recovery			
	3D Coastal zoning	Restrict construction in high-risk zones and/or relocate vulnerable populations to safer areas		\bigcirc	
	3E Incentivise movement uphill	Incentivise households to move uphill away from hazard zone		\bigcirc	\bigcirc
	3F Improve disaster response	Review current disaster response plan and adapt to include proper coastal flooding response procedures			
inancial esponses	Set up ICZM (Integrated Coastal Zone Management)	Set up a National cooperative approach to conserve and develop coast economically, socially, and environmentally (e.g. Australia)			

SLIDE 294

Ē

	n measures long lis	t: Coastal flooding (4/4)	Included in cost curve	Low Me	dium 🔵 High
			Feasibility		
	Measure	Description	Engineering	Local authority	Community
Infrastructure/ asset based responses					
Technological/ optimisation responses					
Systemic/ behavioral responses					
	4A Mandatory individual risk transfer	Require all home- and business-owners to insure their property, including buildings and contents, with appropriate penal measures for non- compliance			\bigcirc
Financial responses	B Risk transfer at international level	Insurance designed to protect whole of country against the sudden impact of rare but extremely severe events (reinsurance, catastrophe bonds like Worldbank MultiCat, etc.)			
	Contingency capital/ national	National disaster relief fund, accrued against future rebuilding costs			

RESPONDING TO CLIMATE CHANGE IN MOZAMBIQUE

SLIDE 295

Infrastructure/ asset based responses	measure	Description	_ <u>Engineering</u>	Community
	×			
Technological/ optimisation	2A Wind-retrofit buildings	Modify existing buildings to improve wind- resistance		
responses	2B Wind building codes	Construct new houses according to most recent knowledge and buildings standards		
Systemic/ behavioral responses				
Financial responses				

SLIDE 296

			Feasibility		
	Measure	Description	Engineering	Local authority	Community
``	1A Drain swamps or river banks	Drain swamps or river banks to reduces ponds and other sources of water that the mosquitoes use to breed			
Infrastructure/ asset based responses	1B Install more healthcare facilities	Provide easy access to health services by ensuring that • Every person a healthcare post in 5 km vicinity • Every healthcare post is capable of treating malaria			
	1C Construct wells	Build wells for high risk malaria communities that people do not need to go close to mosquito areas, such as rivers and ponds, for water collection			
echnological/ otimisation sponses					
vstemic/ ehavioral sponses					
nancial sponses					

October 2012, p 183

RESPONDING TO CLIMATE CHANGE IN MOZAMBIQUE

SLIDE 297

Framewor policie	rk and es Organizational set-up Private sector role Financial regulations
Strategy	 Framework is MCPP (Municipal Climate Protection Programme), a programmatic response, under which sit: Municipal Adaptation Plans in three key sectors (health, water, disaster management); Ecosystem based planning; Community based action; and Urban management interventions – sea level risk, green roofs, etc. Requirement from 2004 for Municipal Climate Protection Programme (MCPP) to be included in the Integrated Development Plan (key annual city planning document monitoring 5 yr plan for the city) Aspiration: joined mitigation and adaptation strategy later in the year
Policies	 Phase 1 (2004-2006): Assess local climate change impacts Phase 2 (2005-date): Develop Municipal Adaptation Plans at different levels (municipal level and sector specific adaptation plans; community level adaptation plans; urban management interventions) Phase 3 (2007-2010): Develop Integrative Assessment Tool to evaluate strategic options Phase 4 (2007-date): Mainstream climate change into city planning at strategic and at project levels
Prioritization of projects	 Expert opinion and assessment are the main tools in choosing priorities, along with practicality, capacity, political interest, legacy and windfall (funding suddenly arrives needing to be spent) List of 47 possible actions in the 3 key sectors, so prioritization due to resources constraints necessary Prioritisation helped by a report (to come out end of this year) by resource economists to perform cost-benefit types analysis to quantify human benefit and ecosystem services Order of priorities is 1) human benefit, 2) ecosystem service, 3) cost Successful large scale projects: FIFA World Cup: "Greening Durban 2010" campaign COP17 (UNFCCC summit 2011) Greening campaign

Monterrey - main messages

- A severe hurricane in 2010 changed the policy direction of the provincial government, now focusing on both GHG mitigation and adaptation. The roughly 1 in 20 year event, has now happened 4 times in the last 20 years, and while not provable that climate change was responsible, it gave the authorities an indication of their vulnerability
- The damage caused by the hurricane was seen by the authorities as an opportunity to think about the way to develop the city. New policies that resulted included
 - Planned infrastructure builds such as a dam and a permanent water supply duct
 - Changes in land use strategy to grow the city upwards rather than outwards
 - Increasing regulation on house building on flood susceptible slopes
 - Tightening requirements for flood resilience when rebuilding major road bridges over rivers
- The most important level of government for setting an implementing adaptation strategy does not have to be the city. In this case it is the provincial (state) government of Neuvo Leon, which can set policies itself and cascade them down to the 10 municipalities under its control (one of which is Monterrey) and is responsible for disaster management. The federal government provides a policy framework and assistance for disaster relief
- Engagement with companies can be fruitful on the subject of GHG mitigation. A good relationship here may serve to make discussions easier on adaptation and the provincial government is keen to increase private sector involvement in this area

310

B 2010 huri	icane nucleus to develop adaptation strategy	
Framework policies	and Organizational set- up Private sector role Financial regulations	\sum
Strategy	 Climate change strategy focused on mitigation changed after Hurricane Alex in 20 devastated large areas of Nuevo Leon's transport infrastructure The state now has a State Adaptation Strategy with a vision to 'climate proof' strategic infrastructure and the regional development process State Climate Change Action Plan assessed climate vulnerability of key sectors ar suggested strategies for adaptive ecosystem and biodiversity management 	10 nd
Policies	 New policies post-hurricane include: Changing land use to grow the city upwards rather than outwards Rebuild major roads as 'ecovia' with lanes for public transport and bikes¹ Specific actions included: Changing city and urban planning regulations to designate mountain areas where buildings can be sited (important in relation to rainfall) Publication of hydro-meteorological Risk Atlas Reviewing construction regulations on new road bridges across river (increased resilience to water damage) and houses in the hills Planning new dam on mountainside to defend against flooding Planning a permanent supply duct bringing water in (rainfall expected to fall) Reforestation programme: replacing trees unsuitable to winter conditions 	d
Prioritization of projects	 A consultation was held on actions to decrease vulnerability Projects are prioritised according to their economic effect, e.g., on employment 	
1 Has led to an increase i SOURCE: Interviews, des	n capacity and speed and a reduction in emissions ik research	311

B City wide Framework a policies	climate change plan includes adaptation	$\overline{\}$
Strategy	 The Mexico City Climate Action Program (MCCAP) 2008-2012, published 2008 Overall objective is to integrate, coordinate and promote public action in Mexico C to reduce environmental, social and economic costs of climate change Part of this is to conduct a comprehensive climate change adaptation plan for Mexico City and have it fully operational by 2012 	ity
Policies	 Approach: Identification of the main threats and vulnerability analysis: studies on vulnerability from scientific, engineering, economic and public standpoints Reducing risk by increasing adaptation capacity: linking various governme policy areas (environment, civil protection, health, rural development, water) Implementation of adaptation actions: actions to improve water, roads, buildings, urban planning, crops and biodiversity. Annual progress review Main medium term measures: Management of watersheds, and soil and water on farmland Monitoring transgenic agricultural and organic production Pilot agricultural and forestry plots (tree species resilient to climate change) Green roofs and Certification Program for Sustainable Buildings (both offer tax incentives for domestic use) 	nt
Prioritization of projects	 Identification of projects made using the early warning system and climate modeling 	ıg
SOURCE: Written response	e from city administration	317

