
THEME: FEASIBILITY

Meta-Data

Title	Unserviced Domestic Organic Waste - Biogas Digesters
File(s)	WP10_07_RUR_NOT_02.shp, WP10_07_RUR_NOT_02_catch.shp
Author(s)	Hugo, W
Publication Date	2015
Citation	Hugo, W. 2014. Feasibility of BioEnergy production in South Africa, BioEnergy Atlas for South Africa, DST/ SAEON 2014, Section WP10_04
License	Creative Commons 4.0 BY SA (No restrictions on re-use, proper citation and attribution requ

Abstract	* Technical Challenges -
	Proper utilisation of unserviced domestic organic waste requires deployment of household or
	community digesters, on a large scale in mostly rural areas of the country. It may be useful to
	develop a standard unit (1.5-5 tons/annum) that can be replicated as required - there appears to be
	little economy of scale beyond the size of a 10 t/a digester. The feedstock considered here focuses
	on currently unserviced households, and supply of biomass and operation can be improved by
	addition of cattle dung. Data is being prepared and awaited for estimates of cattle dung availability
	and its spatial distribution.
	* Cost Challenges -
	There will be a large number of viable projects, with significant capital investment required. Costs
	are comparable to new coal-based electricity. Subsidy is in lieu of grid electricity.
	* Policy Challenges -
	The projects are feasible, requiring little or no subsidy, but households are unlikely to be able to
	afford the capital investment required. Alignment with the housing subsidy scheme should be
	investigated.
	* Environmental Challenges -
	The net positive impact on greenhouse gas emissions is large, since there are no negative land use
	change impacts, given the significant reduction in GHG as CO2 equivalents in comparison to coal.
Keywords	biogas, digesters, domestic, feasibility, model outputs, organic, rural, unserviced, waste
Caveats	http://bea.dirisa.org/resources/metadata-sheets/WP10_07_META_RUR.pdf
Web Meta-Data	
Web Resource	http://app01.saeon.ac.za:8086/geoserver/BEA/wms?service=WMS&version=1.1.0&reque
	st=GetMap&layers=BEA:WP10_07_RUR_NOT_02&styles=&bbox=16.451920000028533,-
	34.83416989569374,32.892531746697685,-
	22.12503000001036&width=512&height=395&srs=EPSG:4326&format=application/ope

Methodology/ Protocol

Processing/ Provenance	As described above

Important Attributes

MESO_ID	Meso-zone ID
PRICOST	Allocation of Unserviced Domestic Organic Waste to Biogas Digesters, R/ton
ALLOC	Catchment ID

References and Sources

[1]	Croezen, H and van Valkengoed, M. GHG Emissions due to deforestation, Delft, 2009 - http%3A%2F%2Fwww.ce.nl%2F%3Fgo%3Dhome.downloadPub%26id%3D932%26file%3Dghg- emissions-due-to-deforesta.pdf
[2]	Von Maltitz, G. Estimates of Land Use Effects of Major Products and Feedstocks, Work Package 9, in BioEnergy Atlas for South Africa, W Hugo (ed), DST 2013
[3]	Witi, J and Stevens, L- Greenhouse Gas Inventory for South Africa, 2000-2010, Department of Environmental Affairs, 2013 - https://www.environment.gov.za/sites/default/files/docs/greenhousegas_invetorysouthafrica.pdf
[4]	Nahman, A. and Godfrey, L. Economic value of South Africa's Waste (Preliminary), CSIR CSIR/NRE/GES/ER/ 2014/0015/A for DST, 2014, http://www.wasteroadmap.co.za/download/economic_value_sa_waste.pdf and http://www.wasteroadmap.co.za/download/trends_in_waste_management.pdf

[5]	US Environmental Protection Agency, Emission Factors for Greenhouse Gas Inventories, EPA, 2014 - http://www.epa.gov/climateleadership/documents/emission-factors.pdf
[6]	From Waste to Jobs: What 75% Recycling means for California, NRDC, 2014 - http://www.nrdc.org/recycling/files/green-jobs-ca-recycling-report.pdf
[7]	Unserviced Domestic Organic Waste - Biogas Digesters - Catchments: http://app01.saeon.ac.za:8085/geoserver/WP10/wms?service=WMS&version=1.1.0&request=GetM ap&layers=WP10:WP10_07_RUR_NOT_02_catch&styles=&bbox=18.145830027206735,- 34.39130985789482,32.892531746697685,- 22.502897526269876&width=512&height=412&srs=EPSG:4326&format=application/openlayers