
THEME: FEASIBILITY Prepared by: Wim Hugo, SAEON

Fermentation of Maize Grain to n-Butanol

Meta-Data

Title	Fermentation of Maize Grain to n-Butanol
File(s)	WP10_07_MAI_ETH_02.shp, WP10_07_MAI_ETH_02_catch.shp
Author(s)	Hugo, W
Publication Date	2015
Citation	Hugo, W. 2014. Feasibility of BioEnergy production in South Africa, BioEnergy Atlas for South Africa, DST/ SAEON 2014, Section WP10_04
License	Creative Commons 4.0 BY SA (No restrictions on re-use, proper citation and attribution requ

Abstract	* Technical Challenges -
	Technology is relatively simple and has high conversion efficiency.
	* Cost Challenges -
	Despite efficiency, levelised costs are high, due to mainly 2 factors (1) the input cost of raw material
	is high, and (2) operating costs are high due to feedstock (methanol) and distillation operations.
	Selling oilcake has a significant effect on final product cost, with a 50% oilcake internal subsidy
	reducing the costs by R 6,500/ t (0.65 R/kWh). This would bring production cost into line with
	current range of diesel prices.
	* Environmental Challenges -
	Greenhouse gas savings are significant provided land use changes are carbon neutral. Limiting
	cultivation to subsistence cropland should assist with this goal.
	* Social and Institutional Challenges -
	Conversion of subsistence farmers in former homeland areas, with high reliance on cattle and
	maize, to a cash crop with side products for own consumption and cattle feed will require significant
	community involvement. Cooperative farming and marketing channels need to be investigated.
Keywords	butanol, fermentation, feasibility, grain, maize, model outputs
Caveats	http://bea.dirisa.org/resources/metadata-sheets/WP10_07_META_MAI.pdf
Web Meta-Data	
Web Resource	http://app01.saeon.ac.za:8086/geoserver/BEA/wms?service=WMS&version=1.1.0&reque
	st=GetMap&layers=BEA:WP10_07_MAI_BUT_02&styles=&bbox=16.451920000028533,-
	<u>34.83416989569374,32.892531746697685,-</u>
	22.12503000001036&width=512&height=395&srs=EPSG:4326&format=application/ope

Methodology/ Protocol

Processing/ Provenance	As described above
------------------------	--------------------

Important Attributes

MESO_ID	Meso-zone ID
PRICOST	Maize Grain - Optimal Cost and Location for Processing, R/ton
ALLOC	Catchment ID

References and Sources

[1]	Croezen, H and van Valkengoed, M. GHG Emissions due to deforestation, Delft, 2009 - http%3A%2F%2Fwww.ce.nl%2F%3Fgo%3Dhome.downloadPub%26id%3D932%26file%3Dghg-emissions-due-to-deforesta.pdf
[2]	Von Maltitz, G. Estimates of Land Use Effects of Major Products and Feedstocks, Work Package 9, in BioEnergy Atlas for South Africa, W Hugo (ed), DST 2013
[3]	Witi, J and Stevens, L- Greenhouse Gas Inventory for South Africa, 2000-2010, Department of Environmental Affairs, 2013 - https://www.environment.gov.za/sites/default/files/docs/greenhousegas_invetorysouthafrica.pdf
[4]	Nahman, A. and Godfrey, L. Economic value of South Africa's Waste (Preliminary), CSIR CSIR/NRE/GES/ER/ 2014/0015/A for DST, 2014, http://www.wasteroadmap.co.za/download/economic_value_sa_waste.pdf and http://www.wasteroadmap.co.za/download/trends_in_waste_management.pdf
[5]	US Environmental Protection Agency, Emission Factors for Greenhouse Gas Inventories, EPA, 2014 - http://www.epa.gov/climateleadership/documents/emission-factors.pdf

[6]	From Waste to Jobs: What 75% Recycling means for California, NRDC, 2014 - http://www.nrdc.org/recycling/files/green-jobs-ca-recycling-report.pdf
[7]	Maize Grain - n-Butanol Fermentation - Catchments: http://app01.saeon.ac.za:8085/geoserver/WP10/wms?service=WMS&version=1.1.0&request=GetMap&layers=WP10:WP10_07_MAI_ETH_02_catch&styles=&bbox=18.145830027206735,-34.39130985789482,32.892531746697685,-22.502897526269876&width=512&height=412&srs=EPSG:4326&format=application/openlayers